The Journal of Microbiology

, Volume 47, Issue 6, pp 753–759 | Cite as

Analysis of a novel class 1 integron containing metallo-β-lactamase gene VIM-2 in Pseudomonas aeruginosa

  • Jae Hoon Jeong
  • Kyeong Seob Shin
  • Jang Won Lee
  • Eun Jin Park
  • Seung-Yeol SonEmail author


Carbapenems such as imipenem are stable to most β-lactamases. Recently, increased numbers of carbapenemase producing Gram-negative bacterial strains have been isolated because of the increased use of cabapenems. In this respect, control of these infectious carbapenemase producing Gram-negative bacteria and understanding their resistance mechanism are becoming more important. These carbapenem-hydrolyzing β-lactamase genes have been reported to exist mostly as gene cassettes in an integron. This implies that antibiotic resistance genes may be transferred to other bacteria via the integron. In the present study, we identified and analyzed an integron containing VIM-2 type metallo-β-lactamase gene in a carbapenemase producing Pseudomonas aeruginosa. In addition, the possibility of resistance spread by integron located in a plasmid was tested. Among glucose non-fermenting Gram-negative bacilli with reduced imipenem susceptibility (MIC≥8 μg/ml) isolated from Korean patients, P. aeruginosa 1082 showed resistance to most β-lactams, cephalosporin, and aminoglycoside. We found that P. aeruginosa 1082 was inhibited by EDTA in EDTA double disk synergy test which means that this strain produces metallo-β-lactamase. Class 1 integron containing bla VIM-2 (carbapenem resistance gene), qacF (quaternary ammonium compound resistance gene), aacA4 (aminoglycoside resistance gene), catB3 (chloramphenicol resistance gene), bla oxa-30 (extended-spectrum β-lactam resistance gene), and aadAl (aminoglycoside resistance gene) gene cassettes was detected in P. aeruginosa 1082. The size of the integron was 5,246 bp and the structure and arrangement of the integron was a novel one in comparison with other integrons found in other P. aeruginosa. The integron could be transferred to Escherichia coli JM109 from P. aeruginosa 1082 possibly via self-transferable plasmid DNA. The integron and a bla VIM-2 gene were detected in the plasmid DNA of the transconjugants whose imipenem resistance was slightly increased as a result of accepting the integron from the donor strain.


blaVIM-2 Class 1 integron P. aeruginosa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, Y., M. Murakami, K. Suzuki, H. Ito, R. Wacharotayankun, S. Ohsuka, N. Kato, and M. Ohta. 1995. A novel integron-like element carrying the metallo-beta-lactamase gene bla IMP. Antimicrob. Agents Chemother. 39, 1612–1615.PubMedGoogle Scholar
  2. Bonomo, R.A. and D. Szabo. 2006. Mechanisms of multidrug resistance in acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis. 43 Suppl 2, S49–56.CrossRefGoogle Scholar
  3. Cardoso, O., A.F. Alves, and R. Leitao. 2008. Metallo-beta-lactamase VIM-2 in Pseudomonas aeruginosa isolates from a cystic fibrosis patient. Int. J. Antimicrob. Agents 31, 375–379.CrossRefPubMedGoogle Scholar
  4. Fluit, A.C. and F.J. Schmitz. 1999. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur. J. Clin. Microbiol. Infect. Dis. 18, 761–770.CrossRefPubMedGoogle Scholar
  5. Gaydos, J.M. and B.J. Harrington. 1982. Agar disk diffusion for the quality control testing of Autobac elution disks. Antimicrob. Agents Chemother. 21, 516–518.PubMedGoogle Scholar
  6. Heikkila, E., M. Skurnik, L. Sundstrom, and P. Huovinen. 1993. A novel dihydrofolate reductase cassette inserted in an integron borne on a TN21-like element. Antimicrob. Agents Chemother. 37, 1297–1304.PubMedGoogle Scholar
  7. Ito, H., Y. Arakawa, S. Ohsuka, R. Wacharotayankun, N. Kato, and M. Ohta. 1995. Plasmid-mediated dissemination of the metallo-beta-lactamase gene blaIMP among clinically isolated strains of serratia marcescens. Antimicrob. Agents Chemother. 39, 824–829.PubMedGoogle Scholar
  8. Iyobe, S., H. Kusadokoro, J. Ozaki, N. Matsumura, S. Minami, S. Haruta, T. Sawai, and K. O’Hara. 2000. Amino acid substitutions in a variant of IMP-1 metallo-beta-lactamase. Antimicrob. Agents Chemother. 44, 2023–2027.CrossRefPubMedGoogle Scholar
  9. Jones, M.E., E. Peters, A.M. Weersink, A. Fluit, and J. Verhoef. 1997. Widespread occurrence of integrons causing multiple antibiotic resistance in bacteria. Lancet 349, 1742–1743.CrossRefPubMedGoogle Scholar
  10. Juan, C., A. Beceiro, O. Gutierrez, S. Alberti, M. Garau, J.L. Perez, G. Bou, and A. Oliver. 2008. Characterization of the new metallo-β-lactamase VIM-13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate in Spain. Antimicrob. Agents Chemother. 52, 3589–3596.CrossRefPubMedGoogle Scholar
  11. Lagatolla, C., E. Edalucci, L. Dolzani, M.L. Riccio, F. De Luca, E. Medessi, G.M. Rossolini, and E.A. Tonin. 2006. Molecular evolution of metallo-β-lactamase-producing Pseudomonas aeruginosa in a nosocomial setting of high-level endemicity. J. Clin. Microbiol. 44, 2348–2353.CrossRefPubMedGoogle Scholar
  12. Lauretti, L., M.L. Riccio, A. Mazzariol, G. Cornaglia, G. Amicosante, R. Fontana, and G.M. Rossolini. 1999. Cloning and characterization of bla VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 43, 1584–1590.PubMedGoogle Scholar
  13. Lee, K., Y. Chong, H.B. Shin, Y.A. Kim, D. Yong, and J.H. Yum. 2001. Modified hodge and edta-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 7, 88–91.CrossRefPubMedGoogle Scholar
  14. Lee, K., J.B. Lim, J.H. Yum, D. Yong, Y. Chong, J.M. Kim, and D.M. Livermore. 2002. bla VIM-2 cassette-containing novel integrons in metallo-β-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob. Agents Chemother. 46, 1053–1058.CrossRefPubMedGoogle Scholar
  15. Mendes, R.E., M. Castanheira, M.A. Toleman, H.S. Sader, R.N. Jones, and T.R. Walsh. 2007. Characterization of an integron carrying bla IMP-1 and a new aminoglycoside resistance gene, aac(6′)-31, and its dissemination among genetically unrelated clinical isolates in a Brazilian hospital. Antimicrob. Agents Chemother. 51, 2611–2614.CrossRefPubMedGoogle Scholar
  16. Mendes, R.E., M.A. Toleman, J. Ribeiro, H.S. Sader, R.N. Jones, and T.R. Walsh. 2004. Integron carrying a novel metallo-β-lactamase gene, bla IMP-16, and a fused form of aminoglycosideresistant gene aac(6′)-30/aac(6′)-ib′: Report from the SENTRY antimicrobial surveillance program. Antimicrob. Agents Chemother. 48, 4693–4702.CrossRefPubMedGoogle Scholar
  17. Nordmann, P. and L. Poirel. 2002. Emerging carbapenemases in Gram-negative aerobes. Clin. Microbiol. Infect. 8, 321–331.CrossRefPubMedGoogle Scholar
  18. Pena, C., C. Suarez, F. Tubau, O. Gutierrez, A. Dominguez, A. Oliver, M. Pujol, F. Gudiol, and J. Ariza. 2007. Nosocomial spread of Pseudomonas aeruginosa producing the metallo-β-lactamase VIM-2 in a spanish hospital: Clinical and epidemiological implications. Clin. Microbiol. Infect. 13, 1026–1029.CrossRefPubMedGoogle Scholar
  19. Ploy, M.C., P. Courvalin, and T. Lambert. 1998. Characterization of In40 of Enterobacter aerogenes BM2688, a Class 1 integron with two new gene cassettes, cmlA2 and qacF. Antimicrob. Agents Chemother. 42, 2557–2563.PubMedGoogle Scholar
  20. Poirel, L., T. Lambert, S. Turkoglu, E. Ronco, J. Gaillard, and P. Nordmann. 2001. Characterization of class 1 integrons from Pseudomonas aeruginosa that contain the bla VIM-2 carbapenemhydrolyzing β-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob. Agents Chemother. 45, 546–552.CrossRefPubMedGoogle Scholar
  21. Poirel, L., T. Naas, M. Guibert, E.B. Chaibi, R. Labia, and P. Nordmann. 1999. Molecular and biochemical characterization of VEB-1, a novel class a extended-spectrum beta-lactamase encoded by an Escherichia coli integron gene. Antimicrob. Agents Chemother. 43, 573–581.PubMedGoogle Scholar
  22. Poirel, L., T. Naas, D. Nicolas, L. Collet, S. Bellais, J.D. Cavallo, and P. Nordmann. 2000. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44, 891–897.CrossRefPubMedGoogle Scholar
  23. Poirel, L., P. Nordmann, C. Arpin, C. Quentin, and J. Texier- Maugein. 2003. Decreased susceptibility to cefepime in a clinical strain of Escherichia coli related to plasmid- and integron-encoded OXA-30 β-lactamase. Antimicrob. Agents Chemother. 47, 2380–2381.CrossRefPubMedGoogle Scholar
  24. Prats, G., E. Miro, B. Mirelis, L. Poirel, S. Bellais, and P. Nordmann. 2002. First isolation of a carbapenem-hydrolyzing β-lactamase in Pseudomonas aeruginosa in Spain. Antimicrob. Agents Chemother. 46, 932–933.CrossRefPubMedGoogle Scholar
  25. Recchia, G.D. and R.M. Hall. 1995. Gene cassettes: A new class of mobile element. Microbiology 141(Pt 12), 3015–3027.CrossRefPubMedGoogle Scholar
  26. Rodriguez, I., M.R. Rodicio, S. Herrera-Leon, A. Echeita, and M.C. Mendoza. 2008. Class 1 integrons in multidrug-resistant non-typhoidal salmonella enterica isolated in Spain between 2002 and 2004. Int. J. Antimicrob. Agents 32, 158–164.CrossRefPubMedGoogle Scholar
  27. Senda, K., Y. Arakawa, K. Nakashima, H. Ito, S. Ichiyama, K. Shimokata, N. Kato, and M. Ohta. 1996. Multifocal outbreaks of metallo-β-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob. Agents Chemother. 40, 349–353.PubMedGoogle Scholar
  28. Shin, K.S., K. Han, J. Lee, S.B. Hong, B.R. Son, S.J. Youn, J. Kim, and H.S. Shin. 2005. Imipenem-resistant Achromobacter xylosoxidans carrying bla VIM-2-containing class 1 integron. Diagn Microbiol. Infect. Dis. 53, 215–220.CrossRefPubMedGoogle Scholar
  29. Stokes, H.W., D.B. O’Gorman, G.D. Recchia, M. Parsekhian, and R.M. Hall. 1997. Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol. Microbiol. 26, 731–745.CrossRefPubMedGoogle Scholar
  30. Sundstrom, L., G. Swedberg, and O. Skold. 1993. Characterization of transposon Tn5086, carrying the site-specifically inserted gene dhfrVII mediating trimethoprim resistance. J. Bacteriol. 175, 1796–1805.PubMedGoogle Scholar
  31. Toleman, M.A., D. Biedenbach, D. Bennett, R.N. Jones, and T.R. Walsh. 2003. Genetic characterization of a novel metallo-β-lactamase gene, bla IMP-13, harboured by a novel Tn5051-type transposon disseminating carbapenemase genes in europe: Report from the sentry worldwide antimicrobial surveillance programme. J. Antimicrob. Chemother. 52, 583–590.CrossRefPubMedGoogle Scholar
  32. Walsh, T.R., M.A. Toleman, L. Poirel, and P. Nordmann. 2005. Metallo-β-lactamases: The quiet before the storm? Clin. Microbiol. Rev. 18, 306–325.CrossRefPubMedGoogle Scholar
  33. Watanabe, M., S. Iyobe, M. Inoue, and S. Mitsuhashi. 1991. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 35, 147–151.PubMedGoogle Scholar
  34. Yu, Y.S., T.T. Qu, J.Y. Zhou, J. Wang, H.Y. Li, and T.R. Walsh. 2006. Integrons containing the VIM-2 metallo-β-lactamase gene among imipenem-resistant Pseudomonas aeruginosa strains from different Chinese hospitals. J. Clin. Microbiol. 44, 4242–4245.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jae Hoon Jeong
    • 1
  • Kyeong Seob Shin
    • 2
  • Jang Won Lee
    • 1
  • Eun Jin Park
    • 1
  • Seung-Yeol Son
    • 1
    Email author
  1. 1.Department of Microbiology and Institute of Basic SciencesDankook UniversityCheonanRepublic of Korea
  2. 2.Department of Laboratory Medicine, College of MedicineChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations