Advertisement

The Journal of Microbiology

, Volume 46, Issue 5, pp 594–598 | Cite as

Aliihoeflea aestuarii gen. nov., sp. nov., a novel bacterium isolated from tidal flat sediment

  • Seong Woon Roh
  • Kyoung-Ho Kim
  • Young-Do Nam
  • Ho-Won Chang
  • Min-Soo Kim
  • Kee-Sun Shin
  • Jung-Hoon Yoon
  • Hee-Mock Oh
  • Jin-Woo BaeEmail author
Note

Abstract

A novel Gram-negative and rod-shaped bacterium, designated N8T, was isolated from tidal flat sediment. Phylogenetic analysis based on 16S rRNA gene sequences showed that N8T strain is associated with the family Phyllobacteriaceae: two uncultured clones (98.4 and 99.8% 16S rRNA gene sequence similarity) and the genus Mesorhizobium (≤97.0%). The novel strain formed a separate clade with uncultured clones in the phylogenetic tree based on 16S rRNA gene sequences. Cellular fatty acid profiles predominately comprised C18:1 ω7c and C19:0 cyclo ω8c. The major isoprenoid quinone is ubiquinone-10 and genomic DNA G+C content is 53.4 mol%. The polyphasic taxonomic study indicates that the novel strain N8T represents a novel species of the new genus in the family Phyllobacteriaceae, named Aliihoeflea aestuarii. The type strain is N8T (= KCTC 22052T= JCM 15118T= DSM 19536T).

Keywords

Aliihoeflea aestuarii gen. nov. sp. nov. taxonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, D.S., W.T. Im, H.C. Yang, and S.T. Lee. 2006. Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int. J. Syst. Evol. Microbiol. 56, 443–448.PubMedCrossRefGoogle Scholar
  2. Bergersen, F.J. 1961. The growth of Rhizobium in synthetic media. Aust. J. Biol. 14, 349–360.Google Scholar
  3. Collins, M.D. 1985. Isoprenoid quinone analysis in classification and identification, p. 267–287. In M. Goodfellow and D.E. Minnikin (ed.), Chemical Methods in Bacterial Systematics, Academic Press, London, UK.Google Scholar
  4. Euzeby, J.P. 1997. List of bacterial names with standing in nomenclature: a folder available on the internet. Int. J. Syst. Bacteriol. 47, 590–592.PubMedGoogle Scholar
  5. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.PubMedCrossRefGoogle Scholar
  6. Felsenstein, J. 2005. PHYLIP-Phylogeny Inference Package, version 3.6. Distributed by the author. University of Washington, Seattle, WA, USA.Google Scholar
  7. Gao, J.L., S.L. Turner, F.L. Kan, E.T. Wang, Z.Y. Tan, Y.H. Qiu, J. Gu, Z. Terefework, J.P. Young, K. Lindstrom, and W.X. Chen. 2004. Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int. J. Syst. Evol. Microbiol. 54, 2003–2012.PubMedCrossRefGoogle Scholar
  8. Ghosh, W. and P. Roy. 2006. Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int. J. Syst. Evol. Microbiol. 56, 91–97.PubMedCrossRefGoogle Scholar
  9. Gonzalez, J.M. and C. Saiz-Jimenez. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.PubMedCrossRefGoogle Scholar
  10. Gram, H. 1884. Über die isolierte Färbung der Schizomyceten in Schnitt-und Trockenpräparaten. Fortschritte der Medizin 2, 185–189.Google Scholar
  11. Gray, J.X. and B.G. Rolfe. 1990. Exopolysaccharide production in Rhizobium and its role in invasion. Mol. Microbiol. 4, 1425–1431.PubMedCrossRefGoogle Scholar
  12. Jarvis, B.D.W., P. Van Berkum, W.X. Chen, S.M. Nour, M.P. Fernandez, J.C. Cleyet-Marel, and M. Gillis. 1997. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Bacteriol. 47, 895–898.CrossRefGoogle Scholar
  13. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nu-cleotide sequences. J. Mol. Evol. 16, 111–120.PubMedCrossRefGoogle Scholar
  14. Kluge, A.G. and F.S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18, 1–32.CrossRefGoogle Scholar
  15. Labbe, N., S. Parent, and R. Villemur. 2004. Nitratireductor aquibiodomus gen. nov., sp. nov., a novel α-proteobacterium from the marine denitrification system of the Montreal Biodome (Canada). Int. J. Syst. Evol. Microbiol. 54, 269–273.PubMedCrossRefGoogle Scholar
  16. Mergaert, J. and J. Swings. 2005. Family IV. Phyllobacteriaceae fam. nov., p. 393. In D.J. Brenner, N.R. Krieg, J.T. Staley, and G.M. Garrity (eds.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol 2. The Proteobacteria, part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), Springer, New York, USA.Google Scholar
  17. Palacios, L., D.R. Arahal, B. Reguera, and I. Marin. 2006. Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V. Int. J. Syst. Evol. Microbiol. 56, 1991–1995.PubMedCrossRefGoogle Scholar
  18. Peix, A., R. Rivas, M.E. Trujillo, M. Vancanneyt, E. Velazquez, and A. Willems. 2005. Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov. sp. nov.. Int. J. Syst. Evol. Microbiol. 55, 1163–1166.PubMedCrossRefGoogle Scholar
  19. Poly, F., L.J. Monrozier, and R. Bally. 2001. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 152, 95–103.PubMedCrossRefGoogle Scholar
  20. Quan, Z.X., H.S. Bae, J.H. Baek, W.F. Chen, W.T. Im, and S.T. Lee. 2005. Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int. J. Syst. Evol. Microbiol. 55, 2543–2549.PubMedCrossRefGoogle Scholar
  21. Roh, S.W., Y. Sung, Y.D. Nam, H.W. Chang, K.H. Kim, J.H. Yoon, C.O. Jeon, H.M. Oh, and J.W. Bae. 2008. Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J. Microbiol. 46, 40–44.PubMedCrossRefGoogle Scholar
  22. Rzhetsky, A. and M. Nei. 1992. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 9, 945–967.Google Scholar
  23. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  24. Smibert, R.M. and N.R. Krieg. 1994. Phenotypic characterization, p. 607–654. In R.G.E.M.P. Gerhardt, W.A. Wood, and N.R. Kreig (eds.), Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, D.C., USA.Google Scholar
  25. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.PubMedCrossRefGoogle Scholar
  26. Teyssier, C., H. Marchandin, H. Jean-Pierre, A. Masnou, G. Dusart, and E. Jumas-Bilak. 2007. Ochrobactrum pseudintermedium sp. nov., a novel member of the family Brucellaceae, isolated from human clinical samples. Int. J. Syst. Evol. Microbiol. 57, 1007–1013.PubMedCrossRefGoogle Scholar
  27. Valverde, A., E. Velazquez, F. Fernandez-Santos, N. Vizcaino, R. Rivas, P.F. Mateos, E. Martinez-Molina, J.M. Igual, and A. Willems. 2005. Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int. J. Syst. Evol. Microbiol. 55, 1985–1989.PubMedCrossRefGoogle Scholar
  28. Wu, C., X. Lu, M. Qin, Y. Wang, and J. Ruan. 1989. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16, 176–178.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2008

Authors and Affiliations

  • Seong Woon Roh
    • 1
    • 2
  • Kyoung-Ho Kim
    • 2
  • Young-Do Nam
    • 1
    • 2
  • Ho-Won Chang
    • 2
  • Min-Soo Kim
    • 1
    • 2
  • Kee-Sun Shin
    • 2
  • Jung-Hoon Yoon
    • 2
  • Hee-Mock Oh
    • 2
  • Jin-Woo Bae
    • 1
    • 2
    • 3
    Email author
  1. 1.University of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Biological Resource CenterKRIBBDaejeonRepublic of Korea
  3. 3.Environmental Biotechnology National Core Research CenterGyeongsang National UniversityJinjuRepublic of Korea

Personalised recommendations