The Journal of Microbiology

, Volume 47, Issue 1, pp 101–109 | Cite as

Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect

  • Bong Seon Kang
  • Jae-Gu Seo
  • Gwa-Su Lee
  • Jung-Hwa Kim
  • Sei Yeon Kim
  • Ye Won Han
  • Hoon Kang
  • Hyung Ok Kim
  • Ji Hwan Rhee
  • Myung-Jun Chung
  • Young Min Park
Article

Abstract

A lactic acid bacterial strain was isolated from human fecal specimen and identified as Enterococcus faecalis SL-5. The isolated strain showed antimicrobial activity against Gram-positive pathogens assayed, especially the highest activity against Propionibacterium acnes. The antimicrobial substance was purified and verified as a bacteriocin (named ESL5) of E. faecalis SL-5 by activity-staining using P. acnes as an indicator. N-terminal sequence of ESL5 was determined (MGAIAKLVAK) and sequence analysis revealed that it is almost identical to the some of enterocins including L50A/B of E. faecium L50 and MR10A/B of E. faecalis MRR 10-3. From the sequencing data of L50A/B structural genes, the nucleotide sequence showed 100% identity with that of the MR10A/B structural genes, implying that ESL5 is an equivalent of enterocin MR10. Meanwhile, we also tested the therapeutic effect of anti-P. acnes activity in patients with mild to moderate acne because of its pathogenic role to acne vulgaris. For this purpose, a concentrated powder of CBT SL-5 was prepared using cell-free culture supernatant (CFCS) of E. faecalis SL-5 and included in a lotion for application in the patients. The study showed that CBT SL-5 lotion significantly reduced the inflammatory lesions like pustules compared to the placebo lotion. Therefore our results indicate that the anti-P. acnes activity produced by E. faecalis SL-5 has potential role to the treatment of acne as an alternative to topical antibiotics.

Keywords

acne vulgaris antimicrobial activity cell-free culture supernatant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amenta, M., M.T. Cascio, P. Di Fiore, and I. Venturini. 2006. Diet and chronic constipation. Benefits of oral supplementation with symbiotic zir fos (Bifidobacterium longum W11+FOS Actilight). Acta Biomed. 3, 157–162.Google Scholar
  2. Aroutcheva, A., D. Gariti, M. Simon, S. Shott, J. Faro, J.A. Simoes, A. Gurguis, and S. Faro. 2001. Defense factors of vaginal lactobacilli. Am. J. Obstet. Gynecol. 185, 375–379.PubMedCrossRefGoogle Scholar
  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  4. Carmichael, J., W.G. DeGraff, A.F. Gazdar, J.D. Minna, and J.B. Mitchell. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936–942.PubMedGoogle Scholar
  5. Cintas, L.M., P. Casaus, H. Holo, P.E. Hernandez, I.F. Nes, and L.S. Havarstein. 1998. Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J. Bacteriol. 180, 1988–1994.PubMedGoogle Scholar
  6. Eady, E.A., J.H. Cove, K.T. Holland, and W.J. Cunliffe. 1989. Erythromycin resistant propionibacteria in antibiotic treated acne patients: association with therapeutic failure. Br. J. Dermatol. 121, 51–57.PubMedCrossRefGoogle Scholar
  7. Fayol-Messaoudi, D., C.N. Berger, M.H. Coconnier-Polter, V. Liévin-Le Moal, and A.L. Servin. 2005. pH-, Lactic acid-, and nonlactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium. Appl. Environ. Microbiol. 10, 6008–6013.CrossRefGoogle Scholar
  8. Field, D., P. Cotter, C. Hill, and R.P. Ross. 2007. Bacteriocin biosynthesis, structure, and function, p. 5–41. In M.A. Riley and O. Gillor (eds.). Research and applications in bacteriocins, Horizon Bioscience, Wymondham, Norfolk, UK.Google Scholar
  9. Floch, M.H. and D.C. Montrose. 2005. Use of probiotics in humans: An analysis of the literature. Gastroenterol. Clin. North Am. 34, 547–570.PubMedCrossRefGoogle Scholar
  10. Hirayama, K. and J. Rafter. 1999. The role of lactic acid bacteria in colon cancer prevention: mechanistic considerations. Antonie Van Leeuwenhoek 76, 391–394.PubMedGoogle Scholar
  11. Jin, L.Z., Y.W. Ho, N. Abdullah, M.A. Ali, and S. Jalaludin. 1996. Antagonistic effects of intestinal Lactobacillus isolates on pathogens of chicken. Lett. Appl. Microbiol. 23, 67–71.PubMedCrossRefGoogle Scholar
  12. Kankaanpää, P., E. Tuomola, H. El-Nezami, J. Ahokas, and S.J. Salminen. 2000. Binding of aflatoxin B1 alters the adhesion properties of Lactobacillus rhamnosus strain GG in a Caco-2 model. J. Food Prot. 63, 412–414.PubMedGoogle Scholar
  13. Kim, C.H., G.E. Ji, and C. Ahn. 2000. Purification and molecular characterization of a bacteriocin from Pediococcus sp. KCA1303-10 isolated from fermented flatfish. Food Sci. Biotechnol. 9, 270–276.Google Scholar
  14. Kim, P.I., M.Y. Jung, Y.H. Chang, S. Kim, S.J. Kim, and Y.H. Park. 2007. Probiotic properties of Lactobacillus and Bifidobacterium strains isolated from porcine gastrointestinal tract. Appl. Microbiol. Biotechnol. 74, 1103–1111.PubMedCrossRefGoogle Scholar
  15. Kirjavainen, P.V., H.S. ElNezami, S.J. Salminen, J.T. Ahokas, and P.F. Wright. 1999. Effects of orally administered viable Lactobacillus rhamnosus GG and Propionibacterium freudenreichii subsp. shermanii JS on mouse lymphocyte proliferation. Clin. Diagn. Lab. Immunol. 6, 799–802.PubMedGoogle Scholar
  16. Lankaputhra, W.E. and N.P. Shah. 1998. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res. 397, 169–182.PubMedGoogle Scholar
  17. Liem, O., M.A. Benninga, H.M. Mousa, and C. Di Lorenzo. 2007. Novel and alternative therapies for childhood constipation. Curr. Gastroenterol. Rep. 9, 214–218.PubMedCrossRefGoogle Scholar
  18. Marta, G.M., R. Coulson, and E. Rubinchik. 2006. Anti-inflammatory activity of cationic peptides: application to the treatment of acne vulgaris. FEMS Microbiol. Lett. 257, 1–6.CrossRefGoogle Scholar
  19. Martín-Platero, A.M., E. Valdivia, M. Ruíz-Rodriguez, J.J. Soler, M. Martín-Vivaldi, M. Maqueda, and M. Martínez-Bueno. 2006. Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe (Upupa epops). Appl. Environ. Microbiol. 72, 4245–4249.PubMedCrossRefGoogle Scholar
  20. Meisel, H. and W. Bockelmann. 1999. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek 76, 207–215.PubMedCrossRefGoogle Scholar
  21. Midolo, P.D., J.R. Lambert, R. Hull, F. Luo, and M.L. Grayson. 1995. In vitro inhibition of Helicobacter pylori NCTC 11637 by organic acids and lactic acid bacteria. J. Appl. Bacteriol. 79, 475–479.PubMedGoogle Scholar
  22. Nord, C.E. and C. Oprica. 2006. Antibiotic resistance in Propionibacterium acnes. Microbiological and clinical aspects. Anaerobe 12, 207–210.PubMedCrossRefGoogle Scholar
  23. Oh, S., S.H. Kim, Y. Ko, J.H. Sim, K.S. Kim, S.H. Lee, S. Park, and Y.J. Kim. 2006. Effect of bacteriocin produced by Lactococcus sp. HY 449 on skin-inflammatory bacteria. Food Chem. Toxicol. 44, 1184–1190.PubMedCrossRefGoogle Scholar
  24. Sanders, M.E. 2003. Probiotics: Considerations for human health. Nutr. Rev. 61, 91–99.PubMedCrossRefGoogle Scholar
  25. Schägger, H. 2006. Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22.PubMedCrossRefGoogle Scholar
  26. Schiffrin, E., F. Rochat, H. Link-Amster, M. Aeschlimann, and A. Donnet-Hughes. 1995. Immunomodulation of blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci. 78, 491–497.PubMedCrossRefGoogle Scholar
  27. Servin, A.L. 2004. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28, 405–440.PubMedCrossRefGoogle Scholar
  28. Sherman, P.M., K.C. Johnson-Henry, H.P. Yeung, P.S. Ngo, J. Goulet, and T.A. Tompkins. 2005. Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect. Immun. 73, 5183–5188.PubMedCrossRefGoogle Scholar
  29. Thiboutot, D. 1997. Acne. An overview of clinical research findings. Dermatol. Clin. 15, 97–109.PubMedCrossRefGoogle Scholar
  30. Touré, R., E. Kheadr, C. Lacroix, O. Moroni, and I. Fliss. 2003. Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. J. Appl. Microbiol. 95, 1058–1069.PubMedCrossRefGoogle Scholar
  31. Tsai, C.C., L.F. Huang, C.C. Lin, and H.Y. Tsen. 2004. Antagonistic activity against Helicobacter pylori infection in vitro by a strain of Enterococcus faecium TM39. Int. J. Food Microbiol. 96, 1–12.PubMedCrossRefGoogle Scholar
  32. Van Belkum, M.J., J. Kok, G. Venema, H. Holo, I.F. Nes, W.N. Konings, and T. Abee. 1991. The bacteriocin lactococcin A specifically increases the permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J. Bacteriol. 173, 7934–7941.PubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2009

Authors and Affiliations

  • Bong Seon Kang
    • 1
  • Jae-Gu Seo
    • 3
  • Gwa-Su Lee
    • 3
  • Jung-Hwa Kim
    • 3
  • Sei Yeon Kim
    • 1
  • Ye Won Han
    • 1
  • Hoon Kang
    • 2
  • Hyung Ok Kim
    • 1
  • Ji Hwan Rhee
    • 3
  • Myung-Jun Chung
    • 3
  • Young Min Park
    • 1
  1. 1.Department of DermatologyKangnam St. Mary’s HospitalSeoulRepublic of Korea
  2. 2.St. Paul’s Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
  3. 3.R&D Center, Cellbiotech, Co. Ltd.GimpoRepublic of Korea

Personalised recommendations