The Journal of Microbiology

, Volume 47, Issue 1, pp 1–8 | Cite as

Response of Saccharomyces cerevisiae to stress-free acidification

  • Allen Kuan-Liang Chen
  • Cristy Gelling
  • Peter L. Rogers
  • Ian W. Dawes
  • Bettina Rosche


Genome-wide transcriptional analysis of a Saccharomyces cerevisiae batch culture revealed that more than 829 genes were regulated in response to an environmental shift from pH 6 to pH 3 by added sulfuric acid. This shift in pH was not detrimental to the rate of growth compared to a control culture that was maintained at pH 6 and the transcriptional changes most strikingly implicated not up- but down-regulation of stress responses. In addition, the transcriptional changes upon acid addition indicated remodeling of the cell wall and central carbon metabolish. The overall trend of changes was similar for the pH-shift experiment and the pH 6 control. However, the changes in the pH 6 control were much weaker and occurred 2.5 h later than in the pH-shift experiment. Thus, the reaction to the steep pH decrease was an immediate response within the normal repertoire of adaptation shown in later stages of fermentation at pH 6. Artificially preventing the yeast from acidifying the medium may be considered physiologically stressful under the tested conditions.


stress response Saccharomyces cerevisiae acidification fermentation pyruvate decarboxylase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2008_167_MOESM1_ESM.txt (141 kb)
Appendix (txt 140 KB)


  1. Blank, L.M. and U. Sauer. 2004. TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150, 1085–1093.PubMedCrossRefGoogle Scholar
  2. Boorsma, A., H. De Nobel, B. Ter Riet, B. Bargmann, S. Brul, K.J. Hellingwerf, and F.M. Klis. 2004. Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast 21, 413–427.PubMedCrossRefGoogle Scholar
  3. Causton, H.C., B. Ren, S.S. Koh, C.T. Harbison, E. Kanin, E.G. Jennings, T.I. Lee, H.L. True, E.S. Lander, and R.A. Young. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell. 12, 323–337.PubMedGoogle Scholar
  4. Chen, A.K., M. Breuer, B. Hauer, P.L. Rogers, and B. Rosche. 2005. pH shift enhancement of Candida utilis pyruvate decarboxylase production. Biotechnol. Bioeng. 92, 183–188.PubMedCrossRefGoogle Scholar
  5. Eisen, M.B., P.T. Spellman, P.O. Brown, and D. Botstein. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868.PubMedCrossRefGoogle Scholar
  6. Gasch, A.P., P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, and P.O. Brown. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11, 4241–4257.PubMedGoogle Scholar
  7. Gelling, C.L., M.D. Piper, S.P. Hong, G.D. Kornfeld, and I.W. Dawes. 2004. Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae. J. Biol. Chem. 279, 7072–7081.PubMedCrossRefGoogle Scholar
  8. Hatzixanthis, K., M. Mollapour, I. Seymour, B.E. Bauer, G. Krapf, C. Schuller, K. Kuchler, and P.W. Piper. 2003. Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast 20, 575–585.PubMedCrossRefGoogle Scholar
  9. Kapteyn, J.C., B. Ter Riet, E. Vink, S. Blad, H. De Nobel, H. Van Den Ende, and F.M. Klis. 2001. Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol. Microbiol. 39, 469–479.PubMedCrossRefGoogle Scholar
  10. Kawahata, M., K. Masaki, T. Fujii, and H. Iefuji. 2006. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 6, 924–936.PubMedCrossRefGoogle Scholar
  11. Lawrence, C.L., C.H. Botting, R. Antrobus, and P.J. Coote. 2004. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol. Cell. Biol. 24, 3307–3323.PubMedCrossRefGoogle Scholar
  12. Piper, P., C.O. Calderon, K. Hatzixanthis, and M. Mollapour. 2001. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147, 2635–2642.PubMedGoogle Scholar
  13. Robinson, M.D., J. Grigull, N. Mohammad, and T.R. Hughes. 2002. FunSpec: a web-based cluster interpreter for yeast. BMC Bioinformatics 3, 35.PubMedCrossRefGoogle Scholar
  14. Rosche, B., N. Leksawasdi, V. Sandford, M. Breuer, B. Hauer, and P. Rogers. 2002. Enzymatic (R)-phenylacetylcarbinol production in benzaldehyde emulsions. Appl. Microbiol. Biotechnol. 60, 94–100.PubMedCrossRefGoogle Scholar
  15. Schmitt, M.E., T.A. Brown, and B.L. Trumpower. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091–3092.PubMedCrossRefGoogle Scholar
  16. Schuller, C., Y.M. Mamnun, M. Mollapour, G. Krapf, M. Schuster, B.E. Bauer, P.W. Piper, and K. Kuchler. 2004. Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol. Biol. Cell. 15, 706–720.PubMedCrossRefGoogle Scholar
  17. Serrano, R., A. Ruiz, D. Bernal, J.R. Chambers, and J. Arino. 2002. The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol. Microbiol. 46, 1319–1333.PubMedCrossRefGoogle Scholar
  18. Sigler, K. and M. Hofer. 1991. Mechanisms of acid extrusion in yeast. Biochim. Biophys. Acta. 1071, 375–391.PubMedGoogle Scholar
  19. Warner, J. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2009

Authors and Affiliations

  • Allen Kuan-Liang Chen
    • 1
  • Cristy Gelling
    • 1
  • Peter L. Rogers
    • 1
  • Ian W. Dawes
    • 1
    • 2
  • Bettina Rosche
    • 1
  1. 1.School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia
  2. 2.Ramaciotti Centre for Gene Function AnalysisUniversity of New South WalesSydneyAustralia
  3. 3.Bioprocessing Technology Institute, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore

Personalised recommendations