The Journal of Microbiology

, Volume 46, Issue 4, pp 357–363 | Cite as

Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing

  • Bong-Soo Kim
  • Byung Kwon Kim
  • Jae-Hak Lee
  • Myungjin Kim
  • Young Woon Lim
  • Jongsik Chun


Dissection of prokaryotic community structure is prerequisite to understand their ecological roles. Various methods are available for such a purpose which amplification and sequencing of 16S rRNA genes gained its popularity. However, conventional methods based on Sanger sequencing technique require cloning process prior to sequencing, and are expensive and labor-intensive. We investigated prokaryotic community structure in tidal flat sediments, Korea, using pyrosequencing and a subsequent automated bioinformatic pipeline for the rapid and accurate taxonomic assignment of each amplicon. The combination of pyrosequencing and bioinformatic analysis showed that bacterial and archaeal communities were more diverse than previously reported in clone library studies. Pyrosequencing analysis revealed 21 bacterial divisions and 37 candidate divisions. Proteobacteria was the most abundant division in the bacterial community, of which Gamma-and Delta-Proteobacteria were the most abundant. Similarly, 4 archaeal divisions were found in tidal flat sediments. Euryarchaeota was the most abundant division in the archaeal sequences, which were further divided into 8 classes and 11 unclassified euryarchaeota groups. The system developed here provides a simple, in-depth and automated way of dissecting a prokaryotic community structure without extensive pretreatment such as cloning.


prokaryotic community pyrosequencing tidal flat taxonomic assignment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdo, Z., U.M. Schuette, S.J. Bent, C.J. Williams, L.J. Forney, and P. Joyce. 2006. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ. Microbiol. 8, 929–938.PubMedCrossRefGoogle Scholar
  2. Acinas, S.G., R. Sarma-Rupavtarm, V. Klepac-Ceraj, and M.F. Polz. 2005. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl. Environ. Microbiol. 71, 8966–8969.PubMedCrossRefGoogle Scholar
  3. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  4. Borneman, J. and E.W. Triplett. 1997. Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 63, 2647–2653.PubMedGoogle Scholar
  5. Carling, P.A. 1982. Temporal and spatial variation in intertidal sedimentation rates. Sedimentology 29, 17–23.CrossRefGoogle Scholar
  6. Chao, A. 1984. Nonparametric-estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270.Google Scholar
  7. Chao, A. and S.M. Lee. 1992. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 87, 210–217.CrossRefGoogle Scholar
  8. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequence. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.PubMedCrossRefGoogle Scholar
  9. Dar, S.A., J.G. Kuenen, and G. Muyzer. 2005. Nested PCR-dena-turing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Appl. Environ. Microbiol. 71, 2325–2330.PubMedCrossRefGoogle Scholar
  10. Dojka, M.A., P. Hugenholtz, S.K. Haack, and N.R. Pace. 1998. Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64, 3869–3877.PubMedGoogle Scholar
  11. Eder, W., M. Schmidt, M. Koch, D. Garbe-Schonberg, and R. Huber. 2002. Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ. Microbiol. 4, 758–763.PubMedCrossRefGoogle Scholar
  12. Edwards, R.A., B. Rodriguez-Brito, L. Wegley, M. Haynes, M. Breitbart, D.M. Peterson, M.O. Saar, S. Alexander, E.C. Alexander, Jr., and F. Rohwer. 2006. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7, Art No. 57.Google Scholar
  13. Gharizadeh, B., T. Nordstrom, A. Ahmadian, M. Ronaghi, and P. Nyren. 2002. Long-read pyrosequencing using pure 2′-deoxy-adenosine-5′-O′-(1-thiotriphosphate) Sp-isomer. Anal. Biochem. 301, 82–90.PubMedCrossRefGoogle Scholar
  14. Gray, J.P. and R.P. Herwig. 1996. Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 62, 4049–4059.PubMedGoogle Scholar
  15. Head, I.M., J.R. Saunders, and R.W. Pickup. 1998. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35, 1–21.PubMedCrossRefGoogle Scholar
  16. Huber, J.A., D.B. Welch, H.G. Morrison, S.M. Huse, P.R. Neal, D.A. Butterfield, and M.L. Sogin. 2007. Microbial population structures in the deep marine biosphere. Science 318, 97–100.PubMedCrossRefGoogle Scholar
  17. Hugenholtz, P., C. Pitulle, K.L. Hershberger, and N.R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376.PubMedGoogle Scholar
  18. Huse, S.M., J.A. Huber, H.G. Morrison, M.L. Sogin, and D.M. Welch. 2007. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 8, R143.PubMedCrossRefGoogle Scholar
  19. Isola, D., M. Pardini, F. Varaine, S. Niemann, S. Rusch-Gerdes, L. Fattorini, G. Orefici, F. Meacci, C. Trappetti, M. Rinaldo Oggioni, and G. Orru. 2005. A pyrosequencing assay for rapid recognition of SNPs in Mycobacterium tuberculosis embB306 region. J. Microbiol. Methods 62, 113–120.PubMedCrossRefGoogle Scholar
  20. Jonasson, J., M. Olofsson, and H.J. Monstein. 2002. Classification, identification and subsyping of bacteria based on pyrosequencing and signature matching of 16S rDNA fragments. PMIS 110, 263–272.Google Scholar
  21. Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96, 317–323.PubMedGoogle Scholar
  22. Kim, B.S., H.M. Oh, H. Kang, S.S. Pack, and J. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14, 205–211.Google Scholar
  23. Kim, B.S., H.M. Oh, H. Kang, and J. Chun. 2005a. Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. 43, 144–151.PubMedGoogle Scholar
  24. Kim, I.G., M.H. Lee, S.Y. Jung, J.J. Song, T.K. Oh, and J.H. Yoon. 2005b. Exiguobacterium aestuarii sp. nov. and Exiguobac-terium marinum sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 55, 885–889.PubMedCrossRefGoogle Scholar
  25. Kim, S., H. Jeong, S. Kim, and J. Chun. 2006. Clostridium gang-hwense sp. nov., isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 56, 691–693.PubMedCrossRefGoogle Scholar
  26. Konneke, M., A.E. Bernhard, J.R. De La Torre, C.B. Walker, J.B. Waterbury, and D.A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546.PubMedCrossRefGoogle Scholar
  27. Kurata, S., T. Kanagawa, Y. Magariyama, K. Takatsu, K. Yamada, T. Yokomaku, and Y. Kamagata. 2004. Reevaluation and reduction of a PCR bias caused by reannealing of templates. Appl. Environ. Microbiol. 70, 7545–7549.PubMedCrossRefGoogle Scholar
  28. Ley, R.E., J.K. Harris, J. Wilcox, J.R. Spear, S.R. Miller, B.M. Bebout, J.A. Maresca, D.A. Bryant, M.L. Sogin, and N.R. Pace. 2006. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72, 3685–3695.PubMedCrossRefGoogle Scholar
  29. Margulies, M., M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka, M.S. Braverman, Y.J. Chen, Z. Chen, S.B. Dewell, L. Du, J.M. Fierro, X.V. Gomes, B.C. Godwin, W. He, S. Helgesen, C.H. Ho, G.P. Irzyk, S.C. Jando, M.L. Alenquer, T.P. Jarvie, K.B. Jirage, J.B. Kim, J.R. Knight, J.R. Lanza, J.H. Leamon, S.M. Lefkowitz, M. Lei, J. Li, K.L. Lohman, H. Lu, V.B. Makhijani, K.E. McDade, M.P. McKenna, E.W. Myers, E. Nickerson, J.R. Nobile, R. Plant, B.P. Puc, M.T. Ronan, G.T. Roth, G.J. Sarkis, J.F. Simons, J.W. Simpson, M. Srinivasan, K.R. Tartaro, A. Tomasz, K.A. Vogt, G.A. Volkmer, S.H. Wang, Y. Wang, M.P. Weiner, P. Yu, R.F. Begley, and J.M. Rothberg. 2005. Genome sequencing in mi-crofabricated high-density picolitre reactors. Nature 437, 376–380.PubMedGoogle Scholar
  30. Martinez, R.J., H.J. Mills, S. Story, and P.A. Sobecky. 2006. Prokary-otic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ. Microbiol. 8, 1783–1796.PubMedCrossRefGoogle Scholar
  31. McKenna, P., C. Hoffmann, N. Minkah, P.A. Pyone, A. Lackner, Z. Liu, C.A. Lozupone, M. Hamady, R. Knight, and F.D. Bushman. 2008. The macaque gut microbiome in health, lenti-viral infection, and chronic enterocolitis. PLoS Pathog. 4, e20.PubMedCrossRefGoogle Scholar
  32. Mussmann, M., K. Ishii, R. Rabus, and R. Amann. 2005. Diversity and vertical distribution of cultured and uncultured Deltapro-teobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol. 7, 405–418.PubMedCrossRefGoogle Scholar
  33. Myers, E.W. and W. Miller. 1988. Optimal alignments in linear space. Comput. Appl. Biosci. 4, 11–17.PubMedGoogle Scholar
  34. Nesbo, C.L., Y. Boucher, M. Dlutek, and W.F. Doolittle. 2005. Lateral gene transfer and phylogenetic assignment of environmental fosmid clones. Environ. Microbiol. 7, 2011–2026.PubMedCrossRefGoogle Scholar
  35. Papineau, D., J.J. Walker, S.J. Mojzsis, and N.R. Pace. 2005. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71, 4822–4832.PubMedCrossRefGoogle Scholar
  36. Petersen, D.G. and I. Dahllof. 2005. Improvements for comparative analysis of changes in diversity of microbial communities using internal standards in PCR-DGGE. FEMS Microbiol. Ecol. 53, 339–348.PubMedCrossRefGoogle Scholar
  37. Ravenschlag, K., K. Sahm, J. Pernthaler, and R. Amann. 1999. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol. 65, 3982–3989.PubMedGoogle Scholar
  38. Ronaghi, M., M. Uhlen, and P. Nyren. 1998. A sequencing method based on real-time pyrophosphate. Science 281, 363–365.PubMedCrossRefGoogle Scholar
  39. Ronaghi, M. and E. Elahi. 2002. Pyrosequencing for microbial typing. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 782, 67–72.PubMedCrossRefGoogle Scholar
  40. Schloss, P.D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71, 1501–1506.PubMedCrossRefGoogle Scholar
  41. Sogin, M.L., H.G. Morrison, J.A. Huber, D.M. Welch, S.M. Huse, P.R. Neal, J.M. Arrieta, and G.J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 103, 12115–12120.PubMedCrossRefGoogle Scholar
  42. Tringe, S.G., C. Von Mering, A. Kobayashi, A.A. Salamov, K. Chen, H.W. Chang, M. Podar, J.M. Short, E.J. Mathur, J.C. Detter, P. Bork, P. Hugenholtz, and E.M. Rubin. 2005. Comparative metagenomics of microbial communities. Science 308, 554–557.PubMedCrossRefGoogle Scholar
  43. Urakawa, H., K. Kita-Tsukamoto, and K. Ohwada. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145, 3305–3315.PubMedGoogle Scholar
  44. Wilms, R., B. Kopke, H. Sass, T.S. Chang, H. Cypionka, and B. Engelen. 2006a. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ. Microbiol. 8, 709–719.PubMedCrossRefGoogle Scholar
  45. Wilms, R., H. Sass, B. Kopke, J. Koster, H. Cypionka, and B. Engelen. 2006b. Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl. Environ. Microbiol. 72, 2756–2764.PubMedCrossRefGoogle Scholar
  46. Yoon, J.H., I.G. Kim, K.H. Kang, T.K. Oh, and Y.H. Park. 2003. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 53, 1297–1303.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2008

Authors and Affiliations

  • Bong-Soo Kim
    • 1
  • Byung Kwon Kim
    • 1
  • Jae-Hak Lee
    • 2
  • Myungjin Kim
    • 1
  • Young Woon Lim
    • 3
  • Jongsik Chun
    • 1
    • 2
  1. 1.School of Biological Sciences and Institute of MicrobiologySeoul National UniversitySeoulRepublic of Korea
  2. 2.Interdisciplinary Program in BioinformaticsSeoul National UniversitySeoulRepublic of Korea
  3. 3.Division of Non-vascular Plants (Fungi/Alage)National Institute of Biological ResourceIncheonRepublic of Korea

Personalised recommendations