The Journal of Microbiology

, Volume 46, Issue 5, pp 542–548 | Cite as

Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae



Sulfite is a commonly used preservative in foods, beverages, and Pharmaceuticals because it is toxic to many microorganisms. In order to understand the global response of Saccharomyces cerevisiae to sulfite, genome-wide transcript profiling following sulfite exposure was obtained. The transcription levels of 21 genes were increased more than 2-fold, while those of 37 genes decreased to a similar extent. Genes involved in carbohydrate metabolism represented the highest proportion of induced genes, which may account for the easily acquired resistance to sulfite. Most of down-regulated genes are involved in transcription, protein biosynthesis, and cell growth. The down-regulation of these genes is thought to reflect growth arrest which occurs during sulfite treatment, allowing cells to save energy. Cells treated with sulfite generated more than 70% of acetaldehyde than untreated cells, suggesting that the increased acetaldehyde production is correlated with the induction of PDC1 gene encoding pyruvate decarboxylase.


DNA microarray gene expression sulfite yeast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandre, H., V. Ansanay-Galeote, S. Dequin, and B. Blondin. 2001. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498, 98–103.PubMedCrossRefGoogle Scholar
  2. Aranda, A. and M.L. Del Olmo. 2004. Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively. Appl. Environ. Microbiol. 70, 1913–1922.PubMedCrossRefGoogle Scholar
  3. Avram, D. and A.T. Bakalinsky. 1997. SSU1 encodes a putative transporter with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J. Bacteriol. 179, 5971–5974.PubMedGoogle Scholar
  4. Boulton, R.B. and V.L. Singleton. 1995. The role of sulfur dioxide in wine, p. 448–437. In L.F. Bisson and R.E. Kunkee (eds.), Principles and practices of wine making. Chapman and Hall, New York, N.Y., USA.Google Scholar
  5. Caba, E., D.A. Dickinson, G.R. Warnes, and J. Aubrecht. 2005. Differentiating mechanisms of toxicity using global gene expression analysis in Saccharomyces cerevisiae. Mutat. Res. 575, 34–46.PubMedGoogle Scholar
  6. Casalone, E., C.M. Colella, S. Daly, E. Gallori, L. Moriani, and M. Polsinelli. 1992. Mechanism of resistance to sulphite in Saccharomyces cerevisiae. Curr. Genet. 22, 435–440.PubMedCrossRefGoogle Scholar
  7. Casalone, E., C.M. Colella, E Ricci, and M. Polsinelli. 1989. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to sulphite. Yeast 5, S287–291.PubMedGoogle Scholar
  8. Chang, I.S., B.H. Kim, and P.K. Shin. 1997. Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl. Environ. Microbiol. 63, 1–6.PubMedGoogle Scholar
  9. Compagno, C., L. Brambilla, D. Capitanio, E Boschi, B.M. Banzi, and D. Porro. 2001. Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant. Yeast 18, 663–670.PubMedCrossRefGoogle Scholar
  10. Gasch, A.P. and M. Werner-Washburne. 2002. The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2, 181–192.PubMedCrossRefGoogle Scholar
  11. Gunnison, A.F. and D.W. Jacobson. 1987. Sulfite hypersensitivity: a critical review. CRC Crit. Rev. Toxi. 17, 185–214.CrossRefGoogle Scholar
  12. Hinze, H. and H. Holzer. 1986. Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite. Arch. Microbiol. 145, 27–31.PubMedCrossRefGoogle Scholar
  13. Jelinsky, S.A. and L.D. Samson. 1999. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc. Natl. Acad. Set USA 96, 1486–1491.CrossRefGoogle Scholar
  14. Lee, M.W., B.J. Kim, H.K. Choi, M.J. Ryu, S.B. Kim, K.M. Kang, E.J. Cho, W. Youn, W.K. Huh, and S.T. Kim. 2007. Global protein expression profiling of budding yeast in response to DNA damage. Yeast 24, 145–154.PubMedCrossRefGoogle Scholar
  15. Maier, K., H. Hinze, and L. Leuschel. 1986. Mechanism of sulfite action on the energy metabolism of Saccharomyces cerevisiae. Biochim. Biophys. Acta. 848, 120–130.CrossRefGoogle Scholar
  16. Meng, Z., G. Qin, B. Zhang, and J. Bai. 2004. DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis 19, 465–468.PubMedCrossRefGoogle Scholar
  17. Ough, C.S. 1993. Sulfur dioxide and sulfites, p. 137–190. In P.M. Davidson and A.L. Branen (eds.), Antimicrobials in Foods. Marcel Dekker Inc., New York, N.Y., USA.Google Scholar
  18. Overkamp, K.M., B.M. Bakker, P. Kötter, M.A. Luttik, J.P. Van Dijken, and J.T. Pronk. 2002. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68, 2814–2821.PubMedCrossRefGoogle Scholar
  19. Ozcan, S. and M. Johnston. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63, 554–569.PubMedGoogle Scholar
  20. Park, H. and A.T. Bakalinsky. 2000. SSU1 mediates sulfite efflux in Saccharomyces cerevisiae. Yeast 16, 881–888.PubMedCrossRefGoogle Scholar
  21. Park, H., N.I. Lopez, and A.T. Bakalinsky. 1999. Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr. Genet. 36, 339–344.PubMedCrossRefGoogle Scholar
  22. Pilkington, B.J. and A.H. Rose. 1988. Reactions of Saccharomyces cerevisiae and Zygosaccharomyces bailli to sulphite. J. Gen. Bacteriol. 134, 2823–2830.Google Scholar
  23. Prakash, D., H. Hinze, and H. Holzer. 1986. Synergistic effect of m-chloro-peroxybenzoic acid, sulfite and nitrite on the energy metabolism of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 34, 305–308.Google Scholar
  24. Pronk, J.T., H.Y de Steensma, and J.P. Van Dijken. 1996. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 1607–1633.PubMedCrossRefGoogle Scholar
  25. Reist, M., P. Jenner, and B. Halliwell. 1998. Sulphite enhances peroxynitrite-dependent alpha1-antiproteinase inactivation: A mechanism of lung injury by sulphur dioxide? FEBS Lett. 423, 231–234.PubMedCrossRefGoogle Scholar
  26. Reverter-Branchat, G., E. Cabiscol, J. Tamarit, M.A. Sorolla, M. Angeles De La Torre, and J. Ros. 2007. Chronological and replicative life-span extension in Saccharomyces cerevisiae by increased dosage of alcohol dehydrogenase 1. Microbiology 153, 3667–3676.PubMedCrossRefGoogle Scholar
  27. Schaff-Gerstenschläger, I., G. Mannhaupt, I. Vetter, F.K. Zimmermann, and H. Feldmann. 1993. TKL2, a second transketolase gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene. Eur. J. Biochem. 217, 487–492.CrossRefGoogle Scholar
  28. Schaufler, L.E. and R.E. Klevit. 2003. Mechanism of DNA binding by the ADR1 zinc finger transcription factor as determined by SPR. J. Mol. Biol. 329, 931–939.PubMedCrossRefGoogle Scholar
  29. Schimz, K.S. and H. Holzer. 1979. Rapid decrease of ATP content in intact cells of Saccharomyces cerevisiae after incubation with low concentrations of sulfite. Arch. Microbiol. 125, 89–95.CrossRefGoogle Scholar
  30. Schmitt, H.D, M. Ciriacy, and F.K. Zimmermann. 1983. The synthesis of yeast pyruvate decarboxylase is regulated by large variations in the messenger RNA level. Mol. Gen. Genet. 192, 247–252.PubMedCrossRefGoogle Scholar
  31. Shenton, D., J.B. Smirnova, J.N. Selley, K. Carroll, S.J. Hubbard, G.D. Pavitt, M.P. Ashe, and C.M. Grant. 2006. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J. Biol. Chem. 281, 29011–29021.PubMedCrossRefGoogle Scholar
  32. Sirisattha, S., Y. Momose, E. Kitagawa, and H. Iwahashi. 2004. Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis. Water Res. 38, 61–70.PubMedCrossRefGoogle Scholar
  33. Taylor, S.L., N.A. Higley, and R.K. Bush. 1986. Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv. Food Res. 30, 1–76.PubMedCrossRefGoogle Scholar
  34. Ter Linde, J.J., H. Liang, R.W. Davis, W. Steensma, J.P. Van Dijken, and J.T. Pronk. 1999. Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J. Bacteriol. 181, 7409–7413.PubMedGoogle Scholar
  35. Thomas, D., R. Barbey, D. Henry, and Y. Surdin-Kerjan. 1992. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J. Gen. Microbiol. 138, 2021–2028.PubMedGoogle Scholar
  36. Walther, K. and H. Schüller. 2001. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Microbiology 147, 2037–2044.PubMedGoogle Scholar
  37. Waters, B.M. and D.J. Eide. 2002. Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. J.Biol. Chem. 277, 33749–33757.PubMedCrossRefGoogle Scholar
  38. Wu, H., X. Zheng, Y. Araki, H. Sahara, H. Takagi, and H. Shimoi. 2006. Global gene expression analysis of yeast cells during sake brewing. Appl. Environ. Microbiol. 72, 7353–7358.PubMedCrossRefGoogle Scholar
  39. Zhang, X., A.S. Vincent, B. Halliwell, and K.P. Wong. 2004. A mechanism of sulfite neurotoxicity: Direct inhibition of glutamate dehydrogenase. J. Biol. Chem. 279, 43035–43045.PubMedCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2008

Authors and Affiliations

  1. 1.Division of Applied Biological SciencesSunmoon UniversityAsanRepublic of Korea

Personalised recommendations