The Journal of Microbiology

, Volume 46, Issue 4, pp 390–395 | Cite as

Comamonas granuli sp. nov., isolated from granules used in a wastewater treatment plant

  • Kyoung-Ho Kim
  • Leonid N. Ten
  • Qing-Mei Liu
  • Wan-Taek Im
  • Sung-Taik Lee
Articles

Abstract

A Gram-negative, motile, rod-shaped, non-spore-forming bacterial strain, designated as Ko03T, was isolated from microbial granules, and was characterized, using a polyphasic approach, in order to determine its taxonomic position. The isolate was positive for catalase and oxidase, but negative for gelatinase and β-galactosidase. Phylogenetic analyses using the 16S rRNA gene sequence showed that the strain formed a monophyletic branch towards the periphery of the evolutionary radiation occupied by the genus Comamonas, its closest neighbors being Comamonas koreensis KCTC 12005T (95.9% sequence similarity), Comamonas nitrativorans DSM 13191T (95.7%), and Comamonas odontotermitis LMG 23579T (95.7%). Strain Ko03T had a genomic DNA G+C content of 68.4 mol% and the predominant respiratory quinone was Q-8. The major fatty acids were C16:1ω7c (44.7%), C16:0 (28.1%), C18:1 (16.1%), and C10:0 3-OH (3.5%). These chemo-taxonomic results supported the affiliation of strain Ko03T to the genus Comamonas. However, low 16S rRNA gene sequence similarity values and distinguishing phenotypic characteristics allowed genotypic and phenotypic differentiation of strain Ko03T from recognized Comamonas species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Ko03T represents a novel species of the genus Comamonas, for which the name Comamonas granuli sp. nov. is proposed. The type strain is Ko03T (= KCTC 12199T = NBRC 101663T).

Keywords

betaproteobacteria polyphasic taxonomy Comamonas granuli 16S rRNA gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.PubMedGoogle Scholar
  2. Cappuccino, J.G. and N. Sherman. 2002. Microbiology: a laboratory manual, 6th ed. Pearson Education, Inc., California, USA.Google Scholar
  3. Chang, Y.H., J.I. Han, J. Chun, K.C. Lee, M.S. Rhee, Y.B. Kim, and K.S. Bae. 2002. Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int. J. Syst. Evol. Microbiol. 52, 377–381.PubMedGoogle Scholar
  4. Chou, J.H., S.Y. Sheu, K.Y. Lin, W.M. Chen, A.B. Arun, and C.C. Young. 2007. Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. Int. J. Syst. Evol. Microbiol. 57, 887–891.PubMedCrossRefGoogle Scholar
  5. Collins, M.D. and D. Jones. 1981. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J. Appl. Bacteriol. 51, 129–134.PubMedGoogle Scholar
  6. Davis, G.H. and R.W. Park. 1962. A taxonomic study of certain bacteria currently classified as Vibrio species. J. Gen. Microbiol. 27, 101–119.PubMedGoogle Scholar
  7. De Vos, P., K. Kersters, E. Falsen, B. Pot, M. Gillis, P. Segers, and J. De Ley. 1985. Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev.. Int. J. Syst. Bacteriol. 35, 443–453.Google Scholar
  8. Etchebehere, C., M.I. Errazquin, P. Dabert, R. Moletta, and L. Muxi. 2001. Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int. J. Syst. Evol. Microbiol. 51, 977–983.PubMedGoogle Scholar
  9. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  10. Fitch, W.M. 1972. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  11. Gumaelius, L., G. Magnusson, B. Pettersson, and G. Dalhammar. 2001. Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 51, 999–1006.PubMedGoogle Scholar
  12. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.Google Scholar
  13. Kim, M.K., W.T. Im, H. Ohta, M. Lee, and S.T. Lee. 2005. Sphingopyxis granuli sp. nov., a β-glucosidase producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J. Microbiol. 43, 152–157.PubMedGoogle Scholar
  14. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge: Cambridge University Press, Cambridge, New York, N.Y., USA.Google Scholar
  15. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150–163.PubMedCrossRefGoogle Scholar
  16. Lim, Y.W., S.A. Lee, S.B. Kim, H.Y. Yong, S.H. Yeon, Y.K. Park, D.W. Jeong, and J.S. Park. 2005. Diversity of denitrifying bacteria isolated from Daejeon sewage treatment plant. J. Microbiol. 45, 383–390.Google Scholar
  17. Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.Google Scholar
  18. Moore, D.D. and D. Dowhan. 1995. Preparation and analysis of DNA, p. 2–11. In F.W. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl (eds.), Current protocols in molecular biology. Wiley, New York, N.Y., USA.Google Scholar
  19. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  20. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.Google Scholar
  21. Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.CrossRefGoogle Scholar
  22. Tago, Y. and A. Yokota. 2004. Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. J. Gen. Appl. Microbiol. 50, 243–248.PubMedCrossRefGoogle Scholar
  23. Tamaoka, J., D.M. Ha, and K. Komagata. 1987. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37, 52–59.Google Scholar
  24. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.CrossRefGoogle Scholar
  25. Wauters, G., T. De Baere, A. Willems, E. Falsen, and M. Vaneechoutte. 2003. Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena. Int. J. Syst. Evol. Microbiol. 53, 859–862.PubMedCrossRefGoogle Scholar
  26. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, M.P. Starr, and H.G. Truper. 1987. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.Google Scholar
  27. Wen, A., M. Fegan, C. Hayward, S. Chakraborty, and L.I. Sly. 1999. Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49, 567–576.PubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2008

Authors and Affiliations

  • Kyoung-Ho Kim
    • 1
  • Leonid N. Ten
    • 2
  • Qing-Mei Liu
    • 1
  • Wan-Taek Im
    • 1
  • Sung-Taik Lee
    • 1
  1. 1.Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Department of Biology and Medicinal SciencePai Chai UniversityDaejeonRepublic of Korea
  3. 3.Bioresource CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea

Personalised recommendations