Advertisement

Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes

  • 15 Accesses

Abstract

In recent years, various particulate materials have played important roles in medical applications. However, nano- and micron-sized particles of the same material could exhibit distinct properties due to different particle sizes. This finding provided a simple and effective way to improve the biological applications of particulate materials. Therefore, as a highly promising member, the effect of the particle size change of the magnesium metal organic framework-74 (Mg-MOF74) was well worth evaluating. Here we firstly assessed the in vitro and in vivo toxicity of micron/nanoscale Mg-MOF74 (m-Mg-MOF74/n-Mg-MOF74) in detail. Our in vitro study revealed that compared to micron-sized subjects, n-Mg-MOF74 provided a wider range of safe concentrations. Furthermore, both micron/nanoscale Mg-MOF74 showed good biocompatibility and allowed all the rats under the treatment to survive through the expected experimental periods, with n-Mg-MOF74 still showing lower cardiotoxicity. These advantages of nanoscale Mg-MOF74 might benefit from its sustainable and balanced release of Mg2+ both inside and outside the cells. Based on the biosafety evaluation, advanced bio-functional assessments of m/n-Mg-MOF74 including early osteogenesis and angiogenesis were also performed. Similarly, the suitable dose groups of n-Mg-MOF74 achieved optimal early osteogenic promotion and angiogenic stimulation effects. Overall, our combined data delineated the toxicity and biological behaviors of Mg-MOF74 of different scales, and suggested nanoscale Mg-MOF74 as a better choice for future applications. This result revealed that particle size reduction might be a viable strategy to improve and expand medical applications of MOFs or other particulate materials.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Karimi, M.; Ghasemi, A.; Zangabad, P. S.; Rahighi, R.; Basri, S. M. M.; Mirshekari, H.; Amiri, M.; Pishabad, Z. S.; Aslani, A.; Bozorgomid, M. et al. Smart micro/nanoparticles in stimulusresponsive drug/gene delivery systems. Chem. Soc. Rev.2016, 45, 1457–1501.

  2. [2]

    Ramade, J.; Troc, N.; Boisron, O.; Pellarin, M.; Lebault, M. A.; Cottancin, E.; Oiko, V. T. A.; Gomes, R. C.; Rodrigues, V.; Hillenkamp, M. Nano-fried-eggs: Structural, optical, and magnetic characterization of physically prepared iron-silver nanoparticles. Nano Res.2018, 11, 6074–6085.

  3. [3]

    Zhu, X. J.; Li, J. F.; Peng, P.; Hosseini Nassab, N.; Smith, B. R. Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite. Nano Lett.2019, 19, 6725–6733.

  4. [4]

    Tang, Y. D.; Zhou, Y.; Lan, X. Z.; Huang, D. C.; Luo, T. T.; Ji, J. J.; Mafang, Z. H.; Miao, X. M.; Wang, H.; Wang, W. L. Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging. J. Agric. Food Chem.2019, 67, 2227–2234.

  5. [5]

    Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol.2018, 9, 1050–1074.

  6. [6]

    Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science2013, 341, 1230444.

  7. [7]

    Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal -organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev.2017, 46, 3242–3285.

  8. [8]

    Li, Y. L.; Yu, C.; Yang, B.; Liu, Z. R.; Xia, P. Y.; Wang, Q. Targetcatalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum. Biosens. Bioelectron.2018, 102, 307–315.

  9. [9]

    Bai, Y.; Dou, Y. B.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr -based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev.2016, 45, 2327–2367.

  10. [10]

    Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Sizecontrolled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc.2016, 138, 3518–3525.

  11. [11]

    Chen, X. J.; Zhang, M. J.; Li, S. N.; Li, L.; Zhang, L. Y.; Wang, T. T.; Yu, M.; Mou, Z. C.; Wang, C. G. Facile synthesis of polypyrrole@metal-organic framework core-shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. J. Mater. Chem. B2017, 5, 1772–1778.

  12. [12]

    Gao, X. C.; Zhai, M. J.; Guan, W. H.; Liu, J. J.; Liu, Z. L.; Damirin, A. Controllable synthesis of a smart multifunctional nanoscale metal-organic framework for magnetic resonance/optical imaging and targeted drug delivery. ACS Appl. Mater. Inter.2017, 9, 3455–3462.

  13. [13]

    Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater.2010, 9, 172–178.

  14. [14]

    Wang, Z. F.; Tang, X. J.; Wang, X. X.; Yang, D. D.; Yang, C.; Lou, Y. B.; Chen, J. X.; He, N. Y. Near -infrared light-induced dissociation of zeolitic imidazole framework-8 (ZIF-8) with encapsulated CuS nanoparticles and their application as a therapeutic nanoplatform. Chem. Commun.2016, 52, 12210–12213.

  15. [15]

    Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nystrom, A. M.; Zou, X. D. One -pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc.2016, 138, 962–968.

  16. [16]

    Zhang, X.; Chen, J. Y.; Pei, X.; Wang, J.; Wan, Q. B.; Jiang, S. K.; Huang, C.; Pei, X. B. Enhanced osseointegration of porous titanium modified with zeolitic imidazolate framework-8. ACS Appl. Mater. Inter.2017, 9, 25171–25183.

  17. [17]

    Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev.2012, 112, 1232–1268.

  18. [18]

    Cai, H.; Huang, Y. L.; Li, D. Biological metal-organic frameworks: Structures, host-guest chemistry and bio-applications. Coordin. Chem. Rev.2019, 378, 207–221.

  19. [19]

    Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv. Mater.2018, 30, 1707365.

  20. [20]

    Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials2005, 26, 3995–4021.

  21. [21]

    Kraft, M.; Würth, C.; Muhr, V.; Hirsch, T.; Resch-Genger, U. Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Res.2018, 11, 6360–6374.

  22. [22]

    Ríos, F.; Fernández-Arteaga, A.; Fernández-Serrano, M.; Jurado, E.; Lechuga, M. Silica micro- and nanoparticles reduce the toxicity of surfactant solutions. J. Hazard. Mater.2018, 353, 436–443.

  23. [23]

    Soenen, S. J.; Parak, W. J.; Rejman, J.; Manshian, B. (Intra)cellular stability of inorganic nanoparticles: Effects on cytotoxicity, particle functionality, and biomedical applications. Chem. Rev.2015, 115, 2109–2135.

  24. [24]

    Wu, B.; Chen, L.; Wu, X. M.; Hou, H.; Wang, Z. Z.; Liu, S. Differential influence of molybdenum disulfide at the nanometer and micron scales in the intestinal metabolome and microbiome of mice. Environ. Sci-Nano.2019, 6, 1594–1606.

  25. [25]

    Croissant, J. G.; Fatieiev, Y.; Khashab, N. M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater.2017, 29, 1604634.

  26. [26]

    Wen, J.; Yang, K.; Liu, F. Y.; Li, H. J.; Xu, Y. Q.; Sun, S. G. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem. Soc. Rev.2017, 46, 6024–6045.

  27. [27]

    Kiew, S. F.; Kiew, L. V.; Lee, H. B.; Imae, T.; Chung, L. Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J. Control Release2016, 226, 217–228.

  28. [28]

    Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M. J.; Horcajada, P. Cytotoxicity of nanoscaled metal-organic frameworks. J. Mater. Chem. B2014, 2, 262–271.

  29. [29]

    Dietzel, P. D. C.; Blom, R.; Fjellvåg, H. Base-induced formation of two magnesium metal-organic framework compounds with a bifunctional tetratopic ligand. Eur. J. Inorg. Chem.2008, 2008, 3624–3632.

  30. [30]

    De Baaij, J. H. F.; Hoenderop, J. G. J.; Bindels, R. J. M. Magnesium in man: Implications for health and disease. Physiol. Rev.2015, 95, 1–46.

  31. [31]

    Lih, E.; Kum, C. H.; Park, W.; Chun, S. Y.; Cho, Y.; Joung, Y. K.; Park, K. S.; Hong, Y. J.; Ahn, D. J.; Kim, B. S. et al. Modified magnesium hydroxide nanoparticles inhibit the inflammatory response to biodegradable poly(lactide-co-glycolide) implants. ACS Nano2018, 12, 6917–6925.

  32. [32]

    Lin, S. H.; Yang, G. Z.; Jiang, F.; Zhou, M. L.; Yin, S.; Tang, Y. M.; Tang, T. T.; Zhang, Z. Y.; Zhang, W. J.; Jiang, X. Q. A magnesiumenriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv. Sci.2019, 6, 1900209.

  33. [33]

    Bose, S.; Fielding, G.; Tarafder, S.; Bandyopadhyay, A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol2013, 31, 594–605.

  34. [34]

    Shen, X. K.; Zhang, Y. Y.; Ma, P. P.; Sutrisno, L.; Luo, Z.; Hu, Y.; Yu, Y. L.; Tao, B. L.; Li, C. Q.; Cai, K. Y. Fabrication of magnesium/ zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration. Biomaterials2019, 212, 1–16.

  35. [35]

    Liu, W.; Yan, Z. J.; Ma, X. L.; Geng, T.; Wu, H. H.; Li, Z. Y. Mg -MOF-74/MgF2 composite coating for improving the properties of magnesium alloy implants: Hydrophilicity and corrosion resistance. Materials2018, 11, E396.

  36. [36]

    Yao, Z. Y.; Guo, J. H.; Wang, P.; Liu, Y.; Guo, F.; Sun, W. Y. Controlled synthesis of micro/nanoscale Mg-MOF-74 materials and their adsorption property. Mater. Lett.2018, 223, 174–177.

  37. [37]

    Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q. Screening of bio-compatible metal–organic frameworks as potential drug carriers using Monte Carlo simulations. J. Mater. Chem. B2014, 2, 766–774.

  38. [38]

    Zhu, Z.; Liu, Y. H.; Xue, Y. Y.; Cheng, X. T.; Zhao, W. F.; Wang, J.; He, R.; Wan, Q. B.; Pei, X. B. Tazarotene released from aligned electrospun membrane facilitates cutaneous wound healing by promoting angiogenesis. ACS Appl. Mater. Inter.2019, 11, 36141–36153.

  39. [39]

    Qu, J.; Zhao, X.; Liang, Y. P.; Zhang, T. L.; Ma, P. X.; Guo, B. L. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials2018, 183, 185–199.

  40. [40]

    Ma, P. A.; Xiao, H. H.; Yu, C.; Liu, J. H.; Cheng, Z. Y.; Song, H. Q.; Zhang, X. Y.; Li, C. X.; Wang, J. Q.; Gu, Z. et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett.2017, 17, 928–937.

  41. [41]

    Wang, D. L.; Lin, Z. F.; Wang, T.; Yao, Z. F.; Qin, M. N.; Zheng, S. R.; Lu, W. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? J. Hazard. Mater.2016, 308, 328–334.

  42. [42]

    Goudouri, O. M.; Kontonasaki, E.; Lohbauer, U.; Boccaccini, A. R. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. Acta Biomater.2014, 10, 3795–3810.

  43. [43]

    Aruoja, V.; Pokhrel, S.; Sihtmäe, M.; Mortimer, M.; Mäedler, L.; Kahru, A. Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ. Sci-Nano.2015, 2, 630–644.

  44. [44]

    Lai, D.; Ding, J.; Smith, G. W.; Smith, G. D.; Takayama, S. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum. Reprod2015, 30, 37–45.

  45. [45]

    Kudla, J.; Becker, D.; Grill, E.; Hedrich, R.; Hippler, M.; Kummer, U.; Parniske, M.; Romeis, T.; Schumacher, K. Advances and current challenges in calcium signaling. New Phytol.2018, 218, 414–431.

  46. [46]

    Kim, K.; Hung, R. J.; Perrimon, N. miR-263a regulates ENaC to maintain osmotic and intestinal stem cell homeostasis in Drosophila. Dev. Cell2017, 40, 23–36.

  47. [47]

    Zhang, Y. H.; Rhee, K. Y.; Hui, D.; Park, S. J. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Compos. Part B-Eng.2018, 143, 19–27.

  48. [48]

    Yu, C.; Li, L. F.; Xie, F.; Guo, S. C.; Liu, F. Y.; Dong, N. G.; Wang, Y. J. LncRNA TUG1 sponges miR-204–5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc. Res.2018, 114, 168–179.

  49. [49]

    Zhang, Y. Z.; Liu, X. M.; Li, Z. Y.; Zhu, S. L.; Yuan, X. B.; Cui, Z. D.; Yang, X. J.; Chu, P. K.; Wu, S. L. Nano Ag/ZnO-incorporated hydroxyapatite composite coatings: Highly effective infection prevention and excellent osteointegration. ACS Appl. Mater. Inter.2018, 10, 1266–1277.

  50. [50]

    Kihara, T.; Hirose, M.; Oshima, A.; Ohgushi, H. Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in vitro. Biochem. Biophys. Res. Commun.2006, 341, 1029–1035.

  51. [51]

    Su, C. H.; Li, W. P.; Tsao, L. C.; Wang, L. C.; Hsu, Y. P.; Wang, W. J.; Liao, M. C.; Lee, C. L.; Yeh, C. S. Enhancing microcirculation on multitriggering manner facilitates angiogenesis and collagen deposition on wound healing by photoreleased no from heminderivatized colloids. ACS Nano2019, 13, 4290–4301.

  52. [52]

    Yu, Y. Q.; Jin, G. D.; Xue, Y.; Wang, D. H.; Liu, X. Y.; Sun, J. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater.2017, 49, 590–603.

  53. [53]

    Sun, T. W.; Yu, W. L.; Zhu, Y. J.; Yang, R. L.; Shen, Y. Q.; Chen, D. Y.; He, Y. H.; Chen, F. Hydroxyapatite Nanowire@magnesium silicate core-shell hierarchical nanocomposite: Synthesis and application in bone regeneration. ACS Appl. Mater. Interfaces2017, 9, 16435–16447.

  54. [54]

    Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB Journal2008, 22, 659–661.

  55. [55]

    Rosanoff, A.; Dai, Q.; Shapses, S. A. Essential nutrient interactions: Does low or suboptimal magnesium status interact with vitamin d and/or calcium status? Adv. Nutr.2016, 7, 25–43.

  56. [56]

    Blaine, J.; Chonchol, M.; Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephro.2015, 10, 1257–1272.

  57. [57]

    Gao, C. Y.; Jin, Y.; Jia, G.; Suo, X. M.; Liu, H. F.; Liu, D. D.; Yang, X. J.; Ge, K.; Liang, X. J.; Wang, S. X. et al. Y2O3 nanoparticles caused bone tissue damage by breaking the intracellular phosphate balance in bone marrow stromal cells. ACS Nano2019, 13, 313–323.

  58. [58]

    Govan, J. R.; Porter, C. A.; Cook, J. G. H.; Dixon, B.; Trafford, J. A. Acute magnesium poisoning as a complication of chronic intermittent haemodialysis. Br. Med. J.1968, 2, 278.

  59. [59]

    Beller, G. A.; Hood, W. B. Jr.; Smith, T. W.; Abelmann, W. H.; Wacker, W. E. C. Correlation of serum magnesium levels and cardiac digitalis intoxication. Am. J. Cardiol1974, 33, 225–230.

  60. [60]

    Lai, Y. X.; Cao, H. J.; Wang, X. L.; Chen, S. K.; Zhang, M.; Wang, N.; Yao, Z. H.; Dai, Y.; Xie, X. H.; Zhang, P. et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials2018, 153, 1–13.

  61. [61]

    Goradel, N. H.; Ghiyami-Hour, F.; Jahangiri, S.; Negahdari, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell Physiol.2018, 233, 2902–2910.

  62. [62]

    Almubarak, S.; Nethercott, H.; Freeberg, M.; Beaudon, C.; Jha, A.; Jackson, W.; Marcucio, R.; Miclau, T.; Healy, K.; Bahney, C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone2016, 83, 197–209.

  63. [63]

    Yan, Y. F.; Chen, H.; Zhang, H. B.; Guo, C. J.; Yang, K.; Chen, K. Z.; Cheng, R. Y.; Qian, N. D.; Sandler, N.; Zhang, Y. S. et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials2019, 190, 97–110.

  64. [64]

    Lai, Y. X.; Li, Y.; Cao, H. J.; Long, J.; Wang, X. L.; Li, L.; Li, C. R.; Jia, Q. Y.; Teng, B.; Tang, T. T. et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials2019, 197, 207–219.

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 8160161 381771122 81970985, and 81970984), Key research program of Sichuan Science and technology Department (No. 2018SZ0037).

Author information

Correspondence to Jian Wang or Xibo Pei.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Jiang, S., Liu, Y. et al. Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2642-y

Download citation

Keywords

  • magnesium metal organic framework-74
  • micron/nanoscale
  • biological applications
  • osteogenesis
  • angiogenesis