Advertisement

Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage

  • Jinyi Zhang
  • Shihong Wu
  • Lingzi Ma
  • Peng WuEmail author
  • Juewen LiuEmail author
Research Article

Abstract

Developing nanomaterial-based enzyme mimics for DNA cleavage is an interesting challenge and it has many potential applications. Single-layered graphene oxide (GO) is an excellent platform for DNA adsorption. In addition, GO has been employed for photosensitized generation of reactive oxygen species (ROS). Herein, we demonstrate that GO sheets could cleave DNA as a nuclease mimicking nanozyme in the presence of UV or blue light. For various DNA sequences and lengths, well-defined product bands were observed along with photobleaching of the fluorophore label on the DNA. Different from previously reported GO cleavage of DNA, our method did not require metal ions such as Cu2+. Fluorescence spectroscopy suggested a high adsorption affinity between GO and DNA. For comparison, although zero-dimensional fluorescent carbon dots (C-dots) had higher photosensitivity in terms of producing ROS, their cleavage activity was much lower and only smeared cleavage products were observed, indicating that the ROS acted on the DNA in solution. Based on the results, GO behaved like a classic heterogeneous catalyst following substrate adsorption, reaction, and product desorption steps. This simple strategy may help in the design of new nanozymes by introducing light.

Keywords

graphene oxide photocatalysis nuclease mimicking nanozyme DNA cleavage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Funding for this work was from the Natural Sciences and Engineering Research Council of Canada (NSERC), and the National Natural Science Foundation of China (No. U19A2005).

Supplementary material

12274_2020_2629_MOESM1_ESM.pdf (1.4 mb)
Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage

References

  1. [1]
    Loenen, W. A. M.; Dryden, D. T. F.; Raleigh, E. A.; Wilson, G. G.; Murray, N. E. Highlights of the DNA cutters: A short history of the restriction enzymes. Nucleic Acids Res.2013, 42, 3–19.CrossRefGoogle Scholar
  2. [2]
    Lin, Y. H.; Xu, C.; Ren, J. S.; Qu, X. G. Using thermally regenerable cerium oxide nanoparticles in biocomputing to perform label-free, resettable, and colorimetric logic operations. Angew. Chem., Int. Ed.2012, 51, 12579–12583.CrossRefGoogle Scholar
  3. [3]
    Cong, L.; Ran, F. A.; Cox, D.; Lin, S. L.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X. B.; Jiang, W. Y.; Marraffini, L. A. et al. Multiplex genome engineering using CRISPR/Cas systems. Science2013, 339, 819–823.CrossRefGoogle Scholar
  4. [4]
    Kameshima, W.; Ishizuka, T.; Minoshima, M.; Yamamoto, M.; Sugiyama, H.; Xu, Y.; Komiyama, M. Conjugation of peptide nucleic acid with a pyrrole/imidazole polyamide to specifically recognize and cleave DNA. Angew. Chem., Int. Ed.2013, 52, 13681–13684.CrossRefGoogle Scholar
  5. [5]
    Moser, H. E.; Dervan, P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science1987, 238, 645–650.CrossRefGoogle Scholar
  6. [6]
    Chen, C. H.; Sigman, D. S. Nuclease activity of 1,10-phenanthrolinecopper: Sequence-specific targeting. Proc. Natl. Acad. Sci. USA1986, 83, 7147–7151.CrossRefGoogle Scholar
  7. [7]
    François, J. C.; Saison-Behmoaras, T.; Barbier, C.; Chassignol, M.; Thuong, N. T.; Hélène, C. Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate. Proc. Natl. Acad. Sci. USA1989, 86, 9702–9706.CrossRefGoogle Scholar
  8. [8]
    Carmi, N.; Balkhi, S. R.; Breaker, R. R. Cleaving DNA with DNA. Proc. Natl. Acad. Sci. USA1998, 95, 2233–2237.CrossRefGoogle Scholar
  9. [9]
    Aiba, Y.; Sumaoka, J.; Komiyama, M. Artificial DNA cutters for DNA manipulation and genome engineering. Chem. Soc. Rev.2011, 40, 5657–5668.CrossRefGoogle Scholar
  10. [10]
    Kitamura, Y.; Komiyama, M. Preferential hydrolysis of gap and bulge sites in DNA by Ce(IV)/EDTA complex. Nucleic Acids Res.2002, 30, e102.CrossRefGoogle Scholar
  11. [11]
    Chen, W.; Kitamura, Y.; Zhou, J. M.; Sumaoka, J.; Komiyama, M. Site-selective DNA hydrolysis by combining Ce(IV)/EDTA with monophosphate-bearing oligonucleotides and enzymatic ligation of the scission fragments. J. Am. Chem. Soc.2004, 126, 10285–10291.CrossRefGoogle Scholar
  12. [12]
    Gu, H. Z.; Furukawa, K.; Weinberg, Z.; Berenson, D. F.; Breaker, R. R. Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc.2013, 135, 9121–9129.CrossRefGoogle Scholar
  13. [13]
    Kim, Y. G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA1996, 93, 1156–1160.CrossRefGoogle Scholar
  14. [14]
    Urnov, F. D.; Rebar, E. J.; Holmes, M. C.; Zhang, H. S.; Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet.2010, 11, 636–646.CrossRefGoogle Scholar
  15. [15]
    Porteus, M. H.; Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol.2005, 23, 967–973.CrossRefGoogle Scholar
  16. [16]
    Cassandri, M.; Smirnov, A.; Novelli, F.; Pitolli, C.; Agostini, M.; Malewicz, M.; Melino, G.; Raschellà, G. Zinc-finger proteins in health and disease. Cell Death Discov.2017, 3, 17071.CrossRefGoogle Scholar
  17. [17]
    Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev.2013, 42, 6060–6093.CrossRefGoogle Scholar
  18. [18]
    Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev.2019, 48, 1004–1076.CrossRefGoogle Scholar
  19. [19]
    Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev.2019, 119, 4357–4412.CrossRefGoogle Scholar
  20. [20]
    Sun, M. Z.; Xu, L. G.; Qu, A. H.; Zhao, P.; Hao, T. T.; Ma, W.; Hao, C. L.; Wen, X. D.; Colombari, F. M.; de Moura, A. F. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem.2018, 10, 821–830.CrossRefGoogle Scholar
  21. [21]
    Xu, F.; Lu, Q. W.; Huang, P. J. J.; Liu, J. W. Nanoceria as a DNase I mimicking nanozyme. Chem. Commun.2019, 55, 13215–13218.CrossRefGoogle Scholar
  22. [22]
    Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem., Int. Ed.2009, 48, 4785–4787.CrossRefGoogle Scholar
  23. [23]
    He, S. J.; Song, B.; Li, D.; Zhu, C. F.; Qi, W. P.; Wen, Y. Q.; Wang, L. H.; Song, S. P.; Fang, H. P.; Fan, C. H. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater.2010, 20, 453–459.CrossRefGoogle Scholar
  24. [24]
    Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin–graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano2011, 5, 1282–1290.CrossRefGoogle Scholar
  25. [25]
    Liu, B. W.; Sun, Z. Y.; Zhang, X.; Liu, J. W. Mechanisms of DNA sensing on graphene oxide. Anal. Chem.2013, 85, 7987–7993.CrossRefGoogle Scholar
  26. [26]
    Ren, H. L.; Wang, C.; Zhang, J. L.; Zhou, X. J.; Xu, D. F.; Zheng, J.; Guo, S. W.; Zhang, J. Y. DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano2010, 4, 7169–7174.CrossRefGoogle Scholar
  27. [27]
    Kalluru, P.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Nano-graphene oxide-mediated in vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials2016, 95, 1–10.CrossRefGoogle Scholar
  28. [28]
    Xie, X. Z.; Mao, C. Y.; Liu, X. M.; Zhang, Y. Z.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Pan, H. B.; Chu, P. K.; Wu, S. L. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating. ACS Appl. Mater. Interfaces2017, 9, 26417–26428.CrossRefGoogle Scholar
  29. [29]
    Li, C. B.; Xu, Q.; Xu, S. X.; Zhang, X. F.; Hou, X. D.; Wu, P. Synergy of adsorption and photosensitization of graphene oxide for improved removal of organic pollutants. RSC Adv.2017, 7, 16204–16209.CrossRefGoogle Scholar
  30. [30]
    Jones, M. R.; Seeman, N. C.; Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science2015, 347, 1260901.CrossRefGoogle Scholar
  31. [31]
    Tan, L. H.; Xing, H.; Lu, Y. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc. Chem. Res.2014, 47, 1881–1890.CrossRefGoogle Scholar
  32. [32]
    Hu, Q. Q.; Li, H.; Wang, L. H.; Gu, H. Z.; Fan, C. H. DNA nanotechnology-enabled drug delivery systems. Chem. Rev.2019, 119, 6459–6506.Google Scholar
  33. [33]
    Li, J.; Mo, L. T.; Lu, C. H.; Fu, T.; Yang, H. H.; Tan, W. H. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev.2016, 45, 1410–1431.CrossRefGoogle Scholar
  34. [34]
    Liu, B. W.; Liu, J. W. Interface-driven hybrid materials based on DNA-functionalized gold nanoparticles. Matter2019, 1, 825–847.CrossRefGoogle Scholar
  35. [35]
    Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed.2013, 52, 3953–3957.CrossRefGoogle Scholar
  36. [36]
    Zhang, J. Y.; Lu, X. M.; Tang, D. D.; Wu, S. H.; Hou, X. D.; Liu, J. W.; Wu, P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl. Mater. Interfaces2018, 10, 40808–40814.CrossRefGoogle Scholar
  37. [37]
    Boyce, R. P.; Howard-Flanders, P. Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12. Proc. Natl. Acad. Sci. USA1964, 51, 293–300.CrossRefGoogle Scholar
  38. [38]
    Bilski, P.; Reszka, K.; Bilska, M.; Chignell, C. F. Oxidation of the spin trap 5,5-dimethyl-1-pyrroline N-oxide by singlet oxygen in aqueous solution. J. Am. Chem. Soc.1996, 118, 1330–1338.CrossRefGoogle Scholar
  39. [39]
    Long, R.; Huang, H.; Li, Y. P.; Song, L.; Xiong, Y. J. Palladium-based nanomaterials: A platform to produce reactive oxygen species for catalyzing oxidation reactions. Adv. Mater.2015, 27, 7025–7042.CrossRefGoogle Scholar
  40. [40]
    Wang, H.; Jiang, S. L.; Chen, S. C.; Li, D. D.; Zhang, X. D.; Shao, W.; Sun, X. S.; Xie, J. F.; Zhao, Z.; Zhang, Q. et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater.2016, 28, 6940–6945.CrossRefGoogle Scholar
  41. [41]
    Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater.2018, 28, 1705407.CrossRefGoogle Scholar
  42. [42]
    Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Lanthanideboosted singlet oxygen from diverse photosensitizers along with potent photocatalytic oxidation. ACS Nano2019, 13, 14152–14161.CrossRefGoogle Scholar
  43. [43]
    Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem.2010, 2, 1015–1024.CrossRefGoogle Scholar
  44. [44]
    Li, X.; Peng, Y. H.; Ren, J. S.; Qu, X. G. Carboxyl-modified singlewalled carbon nanotubes selectively induce human telomeric i-motif formation. Proc. Natl. Acad. Sci. USA2006, 103, 19658–19663.CrossRefGoogle Scholar
  45. [45]
    Peng, Y. H.; Wang, X. H.; Xiao, Y.; Feng, L. Y.; Zhao, C.; Ren, J. S.; Qu, X. G. I-motif quadruplex DNA-based biosensor for distinguishing single- and multiwalled carbon nanotubes. J. Am. Chem. Soc.2009, 131, 13813–13818.CrossRefGoogle Scholar
  46. [46]
    Chen, X.; Zhou, X. J.; Han, T.; Wu, J. Y.; Zhang, J. Y.; Guo, S. W. Stabilization and induction of oligonucleotide i-motif structure via graphene quantum dots. ACS Nano2013, 7, 531–537.CrossRefGoogle Scholar
  47. [47]
    Liu, B. W.; Salgado, S.; Maheshwari, V.; Liu, J. W. DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci.2016, 26, 41–49.CrossRefGoogle Scholar
  48. [48]
    Huang, P. J. J.; Kempaiah, R.; Liu, J. W. Synergistic pH effect for reversible shuttling aptamer-based biosensors between graphene oxide and target molecules. J. Mater. Chem.2011, 21, 8991–8993.CrossRefGoogle Scholar
  49. [49]
    Lu, C.; Liu, Y. B.; Ying, Y. B.; Liu, J. W. Comparison of MoS2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir2017, 33, 630–637.CrossRefGoogle Scholar
  50. [50]
    Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett.2019, 19, 3214–3220.CrossRefGoogle Scholar
  51. [51]
    Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun.2014, 5, 4596.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of ChemistryWaterloo Institute for NanotechnologyWaterlooCanada
  2. 2.State Key Laboratory of Hydraulics and Mountain River Engineering, Analytical & Testing CenterSichuan UniversityChengduChina

Personalised recommendations