Advertisement

Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound

Abstract

Design and synthesis of highly efficient and cost-effective bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remain a big challenge. Herein, a quaternary amorphous nanocompound Ni-Fe-P-B has been synthesized by a facile, scalable co-reduction method. The Ni-Fe-P-B exhibits high electrocatalytic activity and outstanding durability for both HER and OER, delivering a current density of 10 mAcm−2 at overpotentials of 220 and 269 mV, respectively. When loaded on carbon fiber paper (CFP) as a bifunctional catalyst, the Ni-Fe-P-B@CFP electrode requires a low cell voltage of 1.58 V to obtain 10 mAcm−2 for overall water splitting with negligible recession over 60 h. The excellent catalytic performances of Ni-Fe-P-B mainly benefit from the metal-metalloid combined composition modulation and the unique amorphous structure. This work provides new insights into the design of robust bifunctional catalysts for water splitting, and may promote the development of multicomponent amorphous catalysts.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Liu, W.; Hu, E. Y.; Jiang, H.; Xiang, Y. J.; Weng, Z.; Li, M.; Fan, Q.; Yu, X. Q.; Altman, E. I.; Wang, H. L. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun.2016, 7, 10771.

  2. [2]

    Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Norskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci.2015, 8, 3022–3029.

  3. [3]

    Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater.2017, 29, 1605838.

  4. [4]

    Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev.2016, 45, 1781.

  5. [5]

    Qi, J.; Zhang, W.; Cao, R. Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater.2018, 8, 1701620.

  6. [6]

    Li, J.; Zheng, G. F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci.2017, 4, 1600380.

  7. [7]

    Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun.2017, 8, 15437.

  8. [8]

    Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy2017, 37, 136–157.

  9. [9]

    Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed.2015, 54, 9351–9355.

  10. [10]

    Yu, F.; Zhou, H. Q.; Huang, Y. F.; Sun, J. Y.; Qin, F.; Bao, J. M.; Goddard III, W. A.; Chen, S.; Ren, Z. F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun.2018, 9, 2551.

  11. [11]

    Chen, L. Y.; Liu, X. F.; Zheng, L. R.; Li, Y. C.; Guo, X.; Wan, X.; Liu, Q. T.; Shang, J. X.; Shui, J. L. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Appl. Catal. B: Environ.2019, 256, 117849.

  12. [12]

    Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal.2019, 2, 259–268.

  13. [13]

    Lyu, F.; Wang, Q. F.; Choi, S. M.; Yin, Y. D. Noble-metal-free electrocatalysts for oxygen evolution. Small2019, 15, 1804201.

  14. [14]

    Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res.2016, 9, 28–46.

  15. [15]

    Chen, J. N.; Yuan, X. L.; Lyu, F.; Zhong, Q. X.; Hu, H. C.; Pan, Q.; Zhang, Q. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A2019, 7, 1281–1286.

  16. [16]

    Xue, L. F.; Li, Y. C.; Liu, X. F.; Liu, Q. T.; Shang, J. X.; Duan, H. P.; Dai, L. M.; Shui, J. L. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun.2018, 9, 3819.

  17. [17]

    Liu, Q. T.; Liu, X. F.; Zheng, L. R.; Shui, J. L. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew. Chem., Int. Ed.2018, 57, 1204–1208.

  18. [18]

    Stern, L. A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci.2015, 8, 2347–2351.

  19. [19]

    Zeng, X. J.; Shui, J. L.; Liu, X. F.; Liu, Q. T.; Li, Y. C.; Shang, J. X.; Zheng, L. R.; Yu, R. H. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater.2018, 8, 1701345.

  20. [20]

    You, B.; Sun, Y. J. Hierarchically porous nickel sulfide multifunctional superstructures. Adv. Energy Mater.2016, 6, 1502333.

  21. [21]

    Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X. et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater.2017, 29, 1704681.

  22. [22]

    Xu, X.; Song, F.; Hu, X. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun.2016, 7, 12324.

  23. [23]

    Xie, J. F.; Qu, H. C.; Xin, J. P.; Zhang, X. X.; Cui, G. W.; Zhang, X. D.; Bao, J.; Tang, B.; Xie, Y. Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Res.2017, 10, 1178–1188.

  24. [24]

    Chen, T.; Tan, Y. W. Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting. Nano Res.2018, 11, 1331–1344.

  25. [25]

    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.2013, 135, 9267–9270.

  26. [26]

    Liang, H. F.; Gandi, A. N.; Anjum, D. H.; Wang, X. B.; Schwingenschlögl, U.; Alshareef, H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett.2016, 16, 7718–7725.

  27. [27]

    Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res.2019, 12, 375–380.

  28. [28]

    Yao, Y. D.; Mahmood, N.; Pan, L.; Shen, G. Q.; Zhang, R. R.; Gao, R. J.; Aleem, F. E.; Yuan, X. Y.; Zhang, X. W.; Zou, J. J. Iron phosphide encapsulated in P-doped graphitic carbon as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions. Nanoscale2018, 10, 21327–21334.

  29. [29]

    Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater.2016, 6, 1502585.

  30. [30]

    Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed.2015, 54, 14710–14714.

  31. [31]

    Lv, Z.; Tahir, M.; Lang, X. W.; Yuan, G.; Pan, L.; Zhang, X. W.; Zou, J. J. Well-dispersed molybdenum nitrides on a nitrogen-doped carbon matrix for highly efficient hydrogen evolution in alkaline media. J. Mater. Chem. A2017, 5, 20932–20937.

  32. [32]

    Jia, J.; Xiong, T. L.; Zhao, L. L.; Wang, F. L.; Liu, H.; Hu, R. Z.; Zhou, J.; Zhou, W. J.; Chen, S. W. Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano2017, 11, 12509–12518.

  33. [33]

    Wang, J. B.; Chen, W. L.; Wang, T.; Bate, N.; Wang, C. L.; Wang, E. B. A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction. Nano Res.2018, 11, 4535–4548.

  34. [34]

    Chen, Y. L.; Yu, G. T.; Chen, W.; Liu, Y. P.; Li, G. D.; Zhu, P. W.; Tao, Q.; Li, Q. J.; Liu, J. W.; Shen, X. P. et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J. Am. Chem. Soc.2017, 139, 12370–12373.

  35. [35]

    Li, H.; Wen, P.; Li, Q.; Dun, C. C.; Xing, J. H.; Lu, C.; Adhikari, S.; Jiang, L.; Carroll, D. L.; Geyer, S. M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater.2017, 7, 1700513.

  36. [36]

    Gupta, S.; Patel, N.; Miotello, A.; Kothari, D. C. Cobalt-boride: An efficient and robust electrocatalyst for hydrogen evolution reaction. J. Power Sources2015, 279, 620–625.

  37. [37]

    Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun.2015, 6, 6616.

  38. [38]

    Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater.2016, 6, 1502313.

  39. [39]

    Liang, Y. H.; Sun, X. P.; Asiri, A. M.; He, Y. Q. Amorphous Ni-B alloy nanoparticle film on Ni foam: Rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology2016, 27, 12LT01.

  40. [40]

    Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett.2017, 2, 1035–1042.

  41. [41]

    Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Jiao, L. F.; Cheng, F. Y.; Chen, J. Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A2018, 6, 22062–22069.

  42. [42]

    Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. ACS Nano2014, 8, 9518–9523.

  43. [43]

    Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater.2015, 5, 1401880.

  44. [44]

    Wei, L.; Karahan, H. E.; Zhai, S. L.; Liu, H. W.; Chen, X. C.; Zhou, Z.; Lei, Y. J.; Liu, Z. W.; Chen, Y. Amorphous bimetallic oxidegraphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv. Mater.2017, 29, 1701410.

  45. [45]

    Xu, L.; Zhang, F. T.; Chen, J. H.; Fu, X. Z.; Sun, R.; Wong, C. P. Amorphous NiFe nanotube arrays bifunctional electrocatalysts for efficient electrochemical overall water splitting. ACS Appl. Energy Mater.2018, 1, 1210–1217.

  46. [46]

    Huang, H. W.; Yu, C.; Zhao, C. T.; Han, X. T.; Yang, J.; Liu, Z. B.; Li, S. F.; Zhang, M. D.; Qiu, J. S. Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy2017, 34, 472–480.

  47. [47]

    Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc.2018, 140, 5241–5247.

  48. [48]

    Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater.2017, 27, 1606635.

  49. [49]

    Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. R.; Chen, C.; Zou, Y. Q.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv. Mater.2019, 31, 1901439.

  50. [50]

    Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Li, J. P. Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res.2018, 11, 1664–1675.

  51. [51]

    Xu, W. C.; Zhu, S. L.; Liang, Y. Q.; Cui, Z. D.; Yang, X. J.; Inoue, A. A nanoporous metal phosphide catalyst for bifunctional water splitting. J. Mater. Chem. A2018, 6, 5574–5579.

  52. [52]

    Li, Y. J.; Huang, B. L.; Sun, Y. J.; Luo, M. C.; Yang, Y.; Qin, Y. N.; Wang, L.; Li, C. J.; Lv, F.; Zhang, W. Y. et al. Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small2019, 15, 1804212.

  53. [53]

    Masa, J.; Sinev, I.; Mistry, H.; Ventosa, E.; de la Mata, M.; Arbiol, J.; Muhler, M.; Roldan Cuenya, B.; Schuhmann, W. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy Mater.2017, 7, 1700381.

  54. [54]

    Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater.2018, 8, 1701475.

  55. [55]

    Nsanzimana, J. M. V.; Reddu, V.; Peng, Y.; Huang, Z. F.; Wang, C.; Wang, X. Ultrathin amorphous iron-nickel boride nanosheets for highly efficient electrocatalytic oxygen production. Chem. Euro. J.2018, 24, 18502–18511.

  56. [56]

    Gupta, S.; Patel, N.; Fernandes, R.; Kadrekar, R.; Dashora, A.; Yadav, A. K.; Bhattacharyya, D.; Jha, S. N.; Miotello, A.; Kothari, D. C. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B: Environ.2016, 192, 126–133.

  57. [57]

    Kim, J.; Kim, H.; Kim, S. K.; Ahn, S. H. Electrodeposited amorphous Co-P-B ternary catalyst for hydrogen evolution reaction. J. Mater. Chem. A2018, 6, 6282–6288.

  58. [58]

    Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed.2015, 54, 6251–6254.

  59. [59]

    Zhang, P. L.; Wang, M.; Yang, Y.; Yao, T. Y.; Han, H. X.; Sun, L. C. Electroless plated Ni-Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy2016, 19, 98–107.

  60. [60]

    Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem., Int. Ed.2014, 53, 6710–6714.

  61. [61]

    Gupta, S.; Patel, N.; Fernandes, R.; Hanchate, S.; Miotello, A.; Kothari, D. C. Co-Mo-B nanoparticles as a non-precious and efficient bifunctional electrocatalyst for hydrogen and oxygen evolution. Electrochim. Acta2017, 232, 64–71.

  62. [62]

    Xu, M.; Han, L.; Han, Y. J.; Yu, Y.; Zhai, J. F.; Dong, S. J. Porous CoP concave polyhedron electrocatalysts synthesized from metal-organic frameworks with enhanced electrochemical properties for hydrogen evolution. J. Mater. Chem. A2015, 3, 21471–21477.

  63. [63]

    Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun.2014, 5, 4695.

  64. [64]

    Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev.2014, 43, 6555–6569.

  65. [65]

    Jiang, J.; Wang, M.; Yan, W. S.; Liu, X. F.; Liu, J. X.; Yang, J. L.; Sun, L. C. Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiOx core-shell heterostructured nanoparticulate film. Nano Energy2017, 38, 175–184.

  66. [66]

    Pan, Y.; Liu, Y. R.; Zhao, J. C.; Yang, K.; Liang, J. L.; Liu, D. D.; Hu, W. H.; Liu, D. P.; Liu, Y. Q.; Liu, C. G. Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. A2015, 3, 1656–1665.

  67. [67]

    Xu, N.; Cao, G. X.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A2017, 5, 12379–12384.

  68. [68]

    Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc.2014, 136, 6744–6753.

  69. [69]

    Tahir, M.; Pan, L.; Zhang, R. R.; Wang, Y. C.; Shen, G. Q.; Aslam, I.; Qadeer, M. A.; Mahmood, N.; Xu, W.; Wang, L. et al. High-valencestate NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential. ACS Energy Lett.2017, 2, 2177–2182.

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. U1832138, 51731002, 51971008, 51671010 and 51920105001) and Fundamental Research Funds for the Central Universities.

Author information

Correspondence to Xiaofang Liu or Ronghai Yu or Jianglan Shui.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Liu, X., Li, Y. et al. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2627-x

Download citation

Keywords

  • electrocatalyst
  • oxygen evolution reaction
  • hydrogen evolution reaction
  • water splitting
  • amorphous