Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate

  • Lei Zheng
  • Feng Guo
  • Tuo Kang
  • Jin Yang
  • Ya Liu
  • Wei Gu
  • Yanfei Zhao
  • Hongzhen Lin
  • Yanbin ShenEmail author
  • Wei Lu
  • Liwei ChenEmail author
Research Article


Li has been considered as the ultimate anode material for high energy density secondary Li batteries. However, its practical application has been limited due to its low Coulombic efficiency (CE) and the formation of lithium dendrites. Recently, we have developed a microspherical Li-carbon nanotube (Li-CNT) composite material passivated with octadecylphosphonic acid (OPA) self-assembled monolayer (SAM) exhibiting suppressed lithium dendrite formation and improved environmental/electrochemical stability. In this work, we demonstrated the significantly enhanced passivation effects of a SAM using dihexadecanoalkyl phosphate (DHP), a molecule that is comprised of double hydrophobic alkyl chains and forms a denser SAM on surfaces with large curvature. As a result, the DHP SAM delivers superior environmental and electrochemical stability to the OPA passivated Li-CNT material. In specific, the DHP passivated Li-CNT composite (DHP-Li-CNT) delivers a high CE of 99.25% under a 33.3% depth of discharge (DOD) at 1 C, when it is paired with a LiFePO4 cathode. The evolution of the SAM during cycling and the effects of DOD and current density on the CE of the DHP-Li-CNT anode have also been investigated. The improved SAM passivation constitutes an important step in achieving the goal of practically applicable Li anodes.


Li metal anode Li-CNT self-assembled monolayer depth of discharge Coulombic efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21625304 and 21733012), the “Strategic Priority Research Program” of Chinese Academy of Sciences (No. XDA09010600), and the Ministry of Science and Technology (No. 2016YFA0200703).

Supplementary material

12274_2019_2565_MOESM1_ESM.pdf (1.4 mb)
Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate


  1. [1]
    Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater.2017, 29, 1700007.CrossRefGoogle Scholar
  2. [2]
    Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol.2017, 12, 194–206.CrossRefGoogle Scholar
  3. [3]
    Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybutin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci.2014, 7, 513–537.CrossRefGoogle Scholar
  4. [4]
    Yang, C. P.; Fu, K.; Zhang, Y.; Hitz, E.; Hu, L. B. Protected lithium-metal anodes in batteries: From liquid to solid. Adv. Mater.2017, 29, 1701169.CrossRefGoogle Scholar
  5. [5]
    Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev.2017, 117, 10403–10473.CrossRefGoogle Scholar
  6. [6]
    Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater.2015, 5, 1402273.CrossRefGoogle Scholar
  7. [7]
    Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci.2011, 4, 3287–3295.CrossRefGoogle Scholar
  8. [8]
    Sunahiro, S.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Rechargeable aqueous lithium-air batteries with an auxiliary electrode for the oxygen evolution. J. Power Sources2014, 262, 338–343.CrossRefGoogle Scholar
  9. [9]
    Lu, Y. Y.; Das, S. K.; Moganty, S. S.; Archer, L. A. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater.2012, 24, 4430–4435.CrossRefGoogle Scholar
  10. [10]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater.2009, 8, 500–506.CrossRefGoogle Scholar
  11. [11]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature2001, 414, 359–367.CrossRefGoogle Scholar
  12. [12]
    Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed.2017, 56, 7764–7768.CrossRefGoogle Scholar
  13. [13]
    Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci.2016, 3, 1500213.CrossRefGoogle Scholar
  14. [14]
    Zhang, Y. H.; Qian, J. F.; Xu, W.; Russell, S. M.; Chen, X. L.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D. H.; Cao, R. G. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett.2014, 14, 6889–6896.CrossRefGoogle Scholar
  15. [15]
    Ding, F.; Xu, W.; Graff, G L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-Free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc.2013, 135, 4450–4456.CrossRefGoogle Scholar
  16. [16]
    Ma, L. B.; Chen, R. P.; Hu, Y.; Zhang, W. J.; Zhu, G. Y.; Zhao, P. Y.; Chen, T.; Wang, C. X.; Yan, W.; Wang, Y. R. et al. Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth. Energy Storage Mater.2018, 14, 258–266.CrossRefGoogle Scholar
  17. [17]
    Ma, L. B.; Zhu, G. Y.; Zhang, W. J.; Zhao, P. Y.; Hu, Y.; Wang, Y. R.; Wang, L.; Chen, R. P.; Chen, T.; Tie, Z. X. et al. Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electro-catalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. Nano Res.2018, 11, 6436–6446.CrossRefGoogle Scholar
  18. [18]
    Erickson, E. M.; Markevich, E.; Salitra, G.; Sharon, D.; Hirshberg, D.; de la Llave, E.; Shterenberg, I.; Rosenman, A.; Frimer, A.; Aurbach, D. Review-development of advanced rechargeable batteries: A continuous challenge in the choice of suitable electrolyte solutions. J. Electrochem. Soc.2015, 162, A2424–A2438.CrossRefGoogle Scholar
  19. [19]
    Chen, T.; Kong, W. H.; Zhang, Z. W.; Wang, L.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Ma, L. B.; Yan, W.; Wang, Y. R. et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy2018, 54, 17–25.CrossRefGoogle Scholar
  20. [20]
    Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D. C.; Liu, Y. Y.; Liu, C.; Hsu, P. C.; Bao, Z. A. et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J. Am. Chem. Soc.2017, 139, 4815–4820.CrossRefGoogle Scholar
  21. [21]
    Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater.2017, 29, 1603755.CrossRefGoogle Scholar
  22. [22]
    Cao, Z. Y.; Xu, P. Y.; Zhai, H. W.; Du, S. C.; Mandal, J.; Dontigny, M.; Zaghib, K.; Yang, Y. Ambient-air stable lithiated anode for rechargeable li-ion batteries with high energy density. Nano Lett.2016, 16, 7235–7240.CrossRefGoogle Scholar
  23. [23]
    Chen, T.; Kong, W. K.; Zhao, P. Y; Lin, H. N; Hu, Y; Chen, R. P; Yan, W; Jin Z. Dendrite-free and stable lithium metal anodes enabled by an antimony-based lithiophilic interphase. Chem. Mater.2019, 18, 7565–7573.CrossRefGoogle Scholar
  24. [24]
    Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Jiao, S. H.; Polzin, B. J.; Zhang, J. G.; Xu, W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy2017, 2, 17012.CrossRefGoogle Scholar
  25. [25]
    Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater.2017, 27, 1605989.CrossRefGoogle Scholar
  26. [26]
    Kim, K.; Park, I.; Ha, S. Y.; Kim, Y.; Woo, M. H.; Jeong, M. H.; Shin, W. C.; Ue, M.; Hong, S. Y.; Choi, N. S. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries. Electrochim. Acta2017, 225, 358–368.CrossRefGoogle Scholar
  27. [27]
    Wan, G. J.; Guo, F. H.; Li, H.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Li, Y. X.; Yang, H. X. Suppression of dendritic lithium growth by in situ formation of a chemically stable and mechanically strong solid electrolyte interphase. ACS Appl. Mater. Interfaces2018, 10, 593–601.CrossRefGoogle Scholar
  28. [28]
    Mogi, R.; Inaba, M.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc.2002, 149, A1578–A1583.CrossRefGoogle Scholar
  29. [29]
    Ota, H.; Shima, K.; Ue, M.; Yamaki, J. I. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta2004, 49, 565–572.CrossRefGoogle Scholar
  30. [30]
    Sano, H.; Sakaebe, H.; Matsumoto, H. Effect of organic additives on electrochemical properties of Li anode in room temperature ionic liquid. J. Electrochem. Soc.2011, 158, A316–A321.CrossRefGoogle Scholar
  31. [31]
    Hu, J. L.; Chen, K. Y.; Li, C. L. Nanostructured Li-rich fluoride coated by ionic liquid as high ion-conductivity solid electrolyte additive to suppress dendrite growth at Li metal anode. ACS Appl. Mater. Interfaces2018, 10, 34322–34331.CrossRefGoogle Scholar
  32. [32]
    Sun, H. T.; Zhu, J.; Baumann, D.; Peng, L. L.; Xu, Y. X.; Shakir, I.; Huang, Y.; Duan, X. F. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater.2019, 4, 45–60.CrossRefGoogle Scholar
  33. [33]
    Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun.2015, 6, 8058.CrossRefGoogle Scholar
  34. [34]
    Go, W.; Kim, M. H.; Park, J.; Lim, C. H.; Joo, S. H.; Kim, Y.; Lee, H. W. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett.2019, 19, 1504–1511.CrossRefGoogle Scholar
  35. [35]
    Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater.2016, 28, 6932–6939.CrossRefGoogle Scholar
  36. [36]
    Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett.2016, 16, 4431–4437.CrossRefGoogle Scholar
  37. [37]
    Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol.2016, 11, 626–632.CrossRefGoogle Scholar
  38. [38]
    Lin, D. C.; Zhao, J.; Sun, J.; Yao, H. B.; Liu, Y. Y.; Yan, K.; Cui, Y. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc. Natl. Acad. Sci. USA2017, 114, 4613–4618.CrossRefGoogle Scholar
  39. [39]
    Wang, Y. L.; Shen, Y. B.; Du, Z. L.; Zhang, X. F.; Wang, K.; Zhang, H. Y.; Kang, T.; Guo, F.; Liu, C. H.; Wu, X. D. et al. A lithium-carbon nanotube composite for stable lithium anodes. J. Mater. Chem. A2017, 5, 23434–23439.CrossRefGoogle Scholar
  40. [40]
    Yang, S. B.; Zhi, L. J.; Tang, K.; Feng, X. L.; Maier, J.; Müllen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater.2012, 22, 3634–3640.CrossRefGoogle Scholar
  41. [41]
    Maddanimath, T.; Khollam, Y. B.; Aslam, A.; Mulla, I. S.; Vijayamohanan, K. Self-assembled monolayers of diphenyl disulphide: A novel cathode material for rechargeable lithium batteries. J. Power Sources2003, 124, 133–142.CrossRefGoogle Scholar
  42. [42]
    Bobb-Semple, D.; Nardi, K. L.; Draeger, N.; Hausmann, D. M.; Bent, S. F. Area-selective atomic layer deposition assisted by self-assembled monolayers: A comparison of Cu, Co, W, and Ru. Chem. Mater.2019, 31, 1635–1645.CrossRefGoogle Scholar
  43. [43]
    Dubey, M.; Weidner, T.; Gamble, L. J.; Castner, D. G. Structure and order of phosphonic acid-based self-assembled monolayers on Si(100). Langmuir2010, 26, 14747–14754.CrossRefGoogle Scholar
  44. [44]
    Liu, Y; Wolf, L. K.; Messmer, M. C. A study of alkyl chain conformational changes in self-assembled n-octadecyltrichlorosilane monolayers on fused silica surfaces. Langmuir2001, 17, 4329–4335.CrossRefGoogle Scholar
  45. [45]
    Kang, T.; Wang, Y. L.; Guo, F.; Liu, C. H.; Zhao, J. H.; Yang, J.; Lin, H. Z.; Qiu, Y. J.; Shen, Y. B.; Lu, W. et al. Self-assembled monolayer enables slurry-coating of Li anode. ACS Cent. Sci. 2019, 5, 468–476.CrossRefGoogle Scholar
  46. [46]
    Contour, J.; Salesse, A.; Froment, M.; Garreau, M.; Thevenin, J.; Warin, D. Analysis by electron-microscopy and XPS of lithium surfaces polarized in anhydrous organic electrolytes. J. Microsc. Spect. Electron.1979, 4, 483–491.Google Scholar
  47. [47]
    Morgan, W. E.; Van Wazer, J. R.; Stec, W. J. Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphates. J. Am. Chem. Soc.1973, 95, 751–755.CrossRefGoogle Scholar
  48. [48]
    Bordenyuk, A. N.; Weeraman, C.; Yatawara, A.; Jayathilake, H. D.; Stiopkin, I.; Liu, Y.; Benderskii, A. V. Vibrational sum frequency generation spectroscopy of dodecanethiol on metal nanoparticles. J. Phys. Chem. C2007, 111, 8925–8933.CrossRefGoogle Scholar
  49. [49]
    Weeraman, C.; Yatawara, A. K.; Bordenyuk, A. N.; Benderskii, A. V. Effect of nanoscale geometry on molecular conformation: Vibrational sum-frequency generation of alkanethiols on gold nanoparticles. J. Am. Chem. Soc.2006, 128, 14244–14245.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lei Zheng
    • 1
    • 2
  • Feng Guo
    • 1
    • 2
  • Tuo Kang
    • 2
  • Jin Yang
    • 2
  • Ya Liu
    • 2
  • Wei Gu
    • 2
  • Yanfei Zhao
    • 3
  • Hongzhen Lin
    • 2
  • Yanbin Shen
    • 2
    Email author
  • Wei Lu
    • 2
  • Liwei Chen
    • 2
    • 4
    Email author
  1. 1.School of Nano Technology and Nano BionicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina
  3. 3.Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)Chinses Academy of Science (CAS)SuzhouChina
  4. 4.In-situ Center for Physical Sciences, School of Chemistry and Chemical EngineeringShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations