Nano Research

, Volume 12, Issue 12, pp 3123–3128 | Cite as

Vapor growth of WSe2/WS2 heterostructures with stacking dependent optical properties

  • Xueping Wu
  • Xiao Wang
  • Honglai Li
  • Zhouxiaosong Zeng
  • Biyuan Zheng
  • Danliang Zhang
  • Fang Li
  • Xiaoli Zhu
  • Ying JiangEmail author
  • Anlian PanEmail author
Research Article


Two-dimensional (2D) vertically stacked heterostructures based on layered transition-metal dichalcogenides (TMDCs) have remarkable potential in future applications due to their rich interlayer related properties, such as interlayer excitons, tunable interlayer band alignments. However, the controlled growth of TMDC bilayer heterostructures with preferred stacking structure remains challenging. Here, we report a two-step van der Waals epitaxial vapor growth of WSe2/WS2 vertically stacked bilayer heterostructures with controllable commensurate crystallographic alignments (so called AA and AB stacking), by controlling the deposition temperature. Moiré patterns were obtained in both AA and AB stacked WSe2/WS2 heterostructures. The stacking configuration of the vertical heterostructures was verified by the second harmonic generation signals. Photoluminescence and Raman spectroscopy studies further confirm that the heterostructures with different stacking configuration have obviously different optical properties, which is ascribed to the distinct interlayer coupling and resonance excitation between the distinguishing AA and AB stacked heterostructures. The controlled growth of AA and AB stacked heterostructures could provide an importance platform not only for fundamental researches but also for functional electronic and optoelectronic device applications.


two-dimensional vertical heterostructure stacking controllable 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the National Natural Science Foundation of China (Nos. 51525202, 51772084, 91850116, 51802089, 61574054, and 61635001), Innovation platform and talent plan of Hunan Province (No. 2017RS3027), the Hunan Province Science and Technology Plan (No. 2019JJ50048), the Program for Youth Leading Talent and Science and Technology Innovation of Ministry of Science and Technology of China, the Fundamental Research Funds for the Central Universities, and the Foundation for Innovative Research Groups of NSFC (No. 21521063).

Supplementary material

12274_2019_2564_MOESM1_ESM.pdf (1.6 mb)
Vapor growth of WSe2/WS2 heterostructures with stacking dependent optical properties


  1. [1]
    Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano2013, 7, 4879–4891.Google Scholar
  2. [2]
    Yang, W. H.; Shang, J. Z.; Wang, J. P.; Shen, X. N.; Cao, B. C.; Peimyoo, N.; Zou, C. J.; Chen, Y.; Wang, Y. L.; Cong, C. X. et al. Electrically tunable valley-light emitting diode (vLED) based on CVD-grown monolayer WS2. Nano Lett.2016, 16, 1560–1567.Google Scholar
  3. [3]
    Jeon, P. J.; Kim, J. S.; Lim, J. Y.; Cho, Y.; Pezeshki, A.; Lee, H. S.; Yu, S.; Min, S. W.; Im, S. Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces2015, 7, 22333–22340.Google Scholar
  4. [4]
    Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol.2014, 9, 257–261.Google Scholar
  5. [5]
    Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature2015, 526, 91–95.Google Scholar
  6. [6]
    Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol.2014, 9, 1024–1030.Google Scholar
  7. [7]
    Wang, W. Y; Klots, A.; Prasai, D.; Yang, Y M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett.2015, 15, 7440–7444.Google Scholar
  8. [8]
    Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature2015, 520, 69–72.Google Scholar
  9. [9]
    Zhou, Y L.; Liu, W.; Huang, X.; Zhang, A. H.; Zhang, Y; Wang, Z. L. Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res.2016, 9, 800–807.Google Scholar
  10. [10]
    Li, D.; Chen, M. Y; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol.2017, 12, 901–906.Google Scholar
  11. [11]
    Fan, X. P.; Jiang, Y; Zhuang, X. J.; Liu, H. J.; Xu, T; Zheng, W. H.; Fan, P.; Li, H. L.; Wu, X. P.; Zhu, X. L. et al. Broken symmetry induced strong nonlinear optical effects in spiral WS2 nanosheets. ACS Nano2017, 11, 4892–4898.Google Scholar
  12. [12]
    Li, H. L.; Liu, H. J.; Zhou, L. W.; Wu, X. P.; Pan, Y. H.; Ji, W.; Zheng, B. Y.; Zhang, Q. L.; Zhuang, X. J.; Zhu, X. L. et al. Strain-tuning atomic substitution in two-dimensional atomic crystals. ACS Nano2018, 12, 4853–4860.Google Scholar
  13. [13]
    Hill, H. M.; Rigosi, A. F.; Roquelet, C.; Chernikov, A.; Berkelbach, T. C.; Reichman, D. R.; Hybertsen, M. S.; Brus, L. E.; Heinz, T. F. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photo-luminescence excitation spectroscopy. Nano Lett.2015, 15, 2992–2997.Google Scholar
  14. [14]
    Seyler, K. L.; Schaibley, J. R.; Gong, P.; Rivera, P.; Jones, A. M.; Wu, S. F.; Yan. J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol.2015, 10, 407–411.Google Scholar
  15. [15]
    Li, H. L.; Duan, X. D.; Wu, X. P.; Zhuang, X. J.; Zhou, H.; Zhang, Q. L.; Zhu, X. L.; Hu, W.; Ren, P. Y; Guo, P. F. et al. Growth of alloy MoS2x Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc.2014, 136, 3756–3759.Google Scholar
  16. [16]
    Shaw, J. C.; Zhou, H. L.; Chen, Y; Weiss, N. O.; Liu, Y; Huang, Y; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res.2014, 7, 511–517.Google Scholar
  17. [17]
    Wang, K.; Huang, B.; Tian, M. K.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano2016, 10, 6612–6622.Google Scholar
  18. [18]
    Parkin, W. M.; Balan, A.; Liang, L. B.; Das, P. M.; Lamparski, M.; Naylor, C. H.; Rodriguez-Manzo, J. A.; Johnson, A. T. C.; Meunier, V.; Drndic, M. Raman shifts in electron-irradiated monolayer MoS2. ACS Nano2016, 10, 4134–4142.Google Scholar
  19. [19]
    Li, H. L.; Zhang, Q. L.; Duan, X. D.; Wu, X. P.; Fan, X. P.; Zhu, X. L.; Zhuang, X. J.; Hu, W.; Zhou, H.; Pan, A. L. et al. Lateral growth of composition graded atomic layer MoS2(1-x)Se2x nanosheets. J. Am. Chem. Soc.2015, 137, 5284–5287.Google Scholar
  20. [20]
    Poellmann, C.; Steinleitner, P.; Leierseder, U.; Nagler, P.; Plechinger, G.; Porer, M.; Bratschitsch, R.; Schüller, C.; Korn, T.; Huber, R. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 2015, 14, 889–893.Google Scholar
  21. [21]
    Wu, X. P.; Li, H. L.; Liu, H. J.; Zhuang, X. J.; Wang, X.; Fan, X. P.; Duan, X. D.; Zhu, X. L.; Zhang, Q. L.; Meixner, A. J. et al. Spatially composition-modulated two-dimensional WS2xSe2(1-x) nanosheets. Nanoscale2017, 9, 4707–4712.Google Scholar
  22. [22]
    Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature2013, 499, 419–425.Google Scholar
  23. [23]
    Qi, Z. Y.; Yang, T. F.; Li, D.; Li, H. L.; Wang, X.; Zhang, X. H.; Li, F.; Zheng, W. H.; Fan, P.; Zhuang, X. J. et al. High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect. Mater. Horiz.2019, 6, 1474–1480.Google Scholar
  24. [24]
    Li, H. L.; Wang, X.; Zhu, X. L.; Duan, X. G.; Pan, A. L. Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chem. Soc. Rev.2018, 47, 7504–7521.Google Scholar
  25. [25]
    Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p-n heterojunctions. Nano Res.2016, 9, 507–516.Google Scholar
  26. [26]
    Li, H. L.; Wu, X. P.; Liu, H. J.; Zheng, B. Y.; Zhang, Q. L.; Zhu, X. L.; Wei, Z.; Zhuang, X. J.; Zhou, H.; Tang, W. X. et al. Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano2017, 11, 961–967.Google Scholar
  27. [27]
    Chiu, M. H.; Li, M. Y.; Zhang, W. J.; Hsu, W. T.; Chang, W. H.; Terrones, M.; Terrones, H.; Li, L. J. Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. ACS Nano2014, 8, 9649–9656.Google Scholar
  28. [28]
    Chiu, M. H.; Zhang, C. D.; Shiu, H. W.; Chuu, C. P.; Chen, C. H.; Chang, C. Y. S.; Chen, C. H.; Chou, M. Y.; Shih, C. K.; Li, L. J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun.2015, 6, 7666.Google Scholar
  29. [29]
    Zhang, J.; Wang, J. H.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z. Y.; Lu, X. B.; Yu, H.; Chen, W.; Zhu, J. Q. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater.2016, 28, 1950–1956.Google Scholar
  30. [30]
    Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun.2015, 6, 6242.Google Scholar
  31. [31]
    Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun.2017, 8, 1906.Google Scholar
  32. [32]
    Zheng, W. H.; Zheng, B. Y.; Yan, C. L.; Liu, Y.; Sun, X. X.; Qi, Z. Y.; Yang, T. F.; Jiang, Y.; Huang, W.; Fan, P. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci.2019, 6, 1802204.Google Scholar
  33. [33]
    Yang, T. F.; Wang, X.; Zheng, B. Y.; Qi, Z. Y.; Ma, C.; Fu, Y. H.; Hautzinger, M. P.; Jiang, Y.; Li, Z. W.; Fan, P. et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano2019, 13, 7996–8003.Google Scholar
  34. [34]
    Zhang, X. W.; Meng, F.; Christianson, J. R.; Arroyo-Torres, C.; Lukowski, M. A.; Liang, D.; Schmidt, J. R.; Jin, S. Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. Nano Lett.2014, 14, 3047–3054.Google Scholar
  35. [35]
    Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett.2015, 15, 6135–6141.Google Scholar
  36. [36]
    Gong, Y. J.; Lin, J. H.; Wang, X. J.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater.2014, 13, 1135–1142.Google Scholar
  37. [37]
    Li, X. F.; Lin, M. W.; Lin, J. H.; Huang, B.; Puretzky, A. A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S. T.; Chi, M. F. et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv.2016, 2, e1501882.Google Scholar
  38. [38]
    Yu, Y. F.; Hu, S.; Su, L. Q.; Huang, L. J.; Liu, Y.; Jin, Z. H.; Purezky, A. A.; Geohegan, D. B.; Kim, K. W.; Zhang, Y.; Cao, L. Y. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett.2014, 15, 486–491.Google Scholar
  39. [39]
    Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. A.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun.2014, 5, 4966.Google Scholar
  40. [40]
    Zheng, S. J.; Sun, L. F.; Zhou, X. H.; Liu, F. C.; Liu, Z.; Shen, Z. X.; Fan, H. J. Coupling and interlayer exciton in twist-stacked WS2 bilayers. Adv. Opt. Mater.2015, 3, 1600–1605.Google Scholar
  41. [41]
    Yan, J. X.; Xia, J.; Wang, X. L.; Liu, L.; Kuo, J. L.; Tay, B. K.; Chen, S.; Zhou, W.; Liu, Z.; Shen, Z. X. Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett.2015, 15, 8155–8161.Google Scholar
  42. [42]
    Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale2013, 5, 9677–9683.Google Scholar
  43. [43]
    Shinde, S. M.; Dhakal, K. P.; Chen, X.; Yun, W. S.; Lee, J.; Kim, H.; Ahn, J. H. Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Mater.2018, 10, e468.Google Scholar
  44. [44]
    Wu, J, B.; Zhang, X.; Ijäs, M.; Han, W. P.; Qiao, X. F.; Li, X. L.; Jiang, D. D.; Ferrari, A. C.; Tan, P. H. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun.2014, 5, 5309.Google Scholar
  45. [45]
    Zeng, Z. X. S.; Sun, X. X.; Zhang, D. L.; Zheng, W. H.; Fan, X. P.; He, M.; Xu, T.; Sun, L. T.; Wang, X.; Pan, A. L. Controlled vapor growth and nonlinear optical applications of large-area 3R phase WS2 and WSe2 atomic layers. Adv. Funct. Mater.2019, 29, 1806874.Google Scholar
  46. [46]
    Liang, J.; Zhang, J.; Li, Z. Z.; Hong, H.; Wang, J. H.; Zhang, Z. H.; Zhou, X.; Qiao, R. X.; Xu, J. Y.; Gao, P. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Lett.2017, 17, 7539–7543.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xueping Wu
    • 1
  • Xiao Wang
    • 1
  • Honglai Li
    • 1
  • Zhouxiaosong Zeng
    • 1
  • Biyuan Zheng
    • 1
  • Danliang Zhang
    • 1
  • Fang Li
    • 1
  • Xiaoli Zhu
    • 1
  • Ying Jiang
    • 1
    Email author
  • Anlian Pan
    • 1
    Email author
  1. 1.Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials and Engineering State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangshaChina

Personalised recommendations