Advertisement

Nano Research

, Volume 12, Issue 12, pp 3116–3122 | Cite as

Amorphous MoS2 confined in nitrogen-doped porous carbon for improved electrocatalytic stability toward hydrogen evolution reaction

  • Shaojie Lu
  • Wenjing Wang
  • Shengshuang Yang
  • Wei ChenEmail author
  • Zhongbin Zhuang
  • Wenjing Tang
  • Caihong He
  • Jiajing Qian
  • Dekun Ma
  • Yun Yang
  • Shaoming HuangEmail author
Research Article
  • 102 Downloads

Abstract

Developing non-precious metal catalysts with high activity and stability for electrochemical hydrogen evolution reaction (HER) is of great significance in both science and technology. In this work, N-doped CMK-3, which was prepared with a casting method using SBA-15 as the hard template and ammonia as the nitrogen source, has been utilized to hold MoS2 and restrict its growth to form MoS2@N-CMK-3 composite. As a result, MoS2 was found to have poorly crystallized and the limited space of porous N-CMK-3 made its size much small. Then there are more active sites in MoS2. Accordingly, MoS2@N-CMK-3 has exhibited good electrocatalytic performance toward HER in acids with a quite small Tafel slope of 32 mVdec”1. And more importantly, compared to MoS2@CMK-3, its stability has been greatly improved, which can be attributed to the interaction between MoS2 and nitrogen atoms avoiding aggregation and mass loss. This work provides an idea that doping a porous carbon support with nitrogen is an effective way to enhance the stability of the catalyst.

Keywords

MoS2 amorphous N-doped CMK-3 hydrogen evolution reaction (HER) stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Nature Science Foundation of Zhejiang Province (No. LY20B010004) and the National Natural Science Foundation of China (Nos. 21671152, 51672193, 51420105002, and 21671014).

Supplementary material

12274_2019_2563_MOESM1_ESM.pdf (5 mb)
Amorphous MoS2 confined in nitrogen-doped porous carbon for improved electrocatalytic stability toward hydrogen evolution reaction

References

  1. [1]
    Turner, J. A. Sustainable hydrogen production. Science2004, 305, 972–974.Google Scholar
  2. [2]
    Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew.Chem., Int.Ed. 2017, 56, 16086–16090.Google Scholar
  3. [3]
    Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y. E.; Li, Y. D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew.Chem., Int.Ed. 2016, 55, 12854–12858.Google Scholar
  4. [4]
    Li, P.; Yang, Z.; Shen, J. X.; Nie, H. G.; Cai, Q. R.; Li, L. H.; Ge, M. Z.; Gu, C. C.; Chen, X. A.; Yang, K. Q. et al. Subnanometer molybdenum sulfide on carbon nanotubes as a highly active and stable electrocatalyst for hydrogen evolution reaction. ACS Appl.Mater.Interfaces2016, 8, 3543–3550.Google Scholar
  5. [5]
    Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; Pérez del Pino, A.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694.Google Scholar
  6. [6]
    Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat.Nanotechnol. 2017, 12, 441–446.Google Scholar
  7. [7]
    Sun, Q.; Wang, N.; Bing, Q.; Si, R.; Liu, J.; Bai, R.; Zhang, P.; Jia, M.; Yu, J. Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem2017, 3, 477–493.Google Scholar
  8. [8]
    Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat.Commun. 2013, 4, 1444.Google Scholar
  9. [9]
    Wang, D. S.; Zhao, P.; Li, Y. D. General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts. Sci.Rep. 2011, 1, 37.Google Scholar
  10. [10]
    Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat.Nanotechnol. 2018, 13, 856–861.Google Scholar
  11. [11]
    McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem.Mater. 2014, 26, 4826–4831.Google Scholar
  12. [12]
    Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J.Am.Chem.Soc. 2013, 135, 17881–17888.Google Scholar
  13. [13]
    Stephens, I. E. L.; Chorkendorff, I. Minimizing the use of platinum in hydrogen-evolving electrodes. Angew.Chem., Int.Ed. 2011, 50, 1476–1477.Google Scholar
  14. [14]
    Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat.Commun. 2016, 7, 11204.Google Scholar
  15. [15]
    Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat.Commun. 2019, 10, 269.Google Scholar
  16. [16]
    Xiang, Z. C.; Zhang, Z.; Xu, X. J.; Zhang, Q.; Yuan, C. W. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon2016, 98, 84–89.Google Scholar
  17. [17]
    Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat.Mater. 2016, 15, 48–53.Google Scholar
  18. [18]
    Ho, T. A.; Bae, C.; Lee, S.; Kim, M.; Montero-Moreno, J. M.; Park, J. H.; Shin, H. Edge-on MoS2 thin films by atomic layer deposition for understanding the interplay between the active area and hydrogen evolution reaction. Chem.Mater. 2017, 29, 7604–7614.Google Scholar
  19. [19]
    Hong, M.; Shi, J. P.; Huan, Y. H.; Xie, Q.; Zhang, Y. F. Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction. Nano Res. 2019, 12, 2140–2149.Google Scholar
  20. [20]
    Ren, B. W.; Li, D. Q.; Jin, Q. Y.; Cui, H.; Wang, C. X. A self-supported porous WN nanowire array: An efficient 3D electrocatalyst for the hydrogen evolution reaction. J.Mater.Chem.A2017, 5, 19072–19078.Google Scholar
  21. [21]
    Lv, Z.; Tahir, M.; Lang, X. W.; Yuan, G.; Pan, L.; Zhang, X. W.; Zou, J. J. Well-dispersed molybdenum nitrides on a nitrogen-doped carbon matrix for highly efficient hydrogen evolution in alkaline media. J.Mater.Chem.A2017, 5, 20932–20937.Google Scholar
  22. [22]
    Gu, W. L.; Gan, L. F.; Zhang, X. Y.; Wang, E. K.; Wang, J. Theoretical designing and experimental fabricating unique quadruple multimetallic phosphides with remarkable hydrogen evolution performance. Nano Energy2017, 34, 421–427.Google Scholar
  23. [23]
    Li, J. Y.; Yan, M.; Zhou, X. M.; Huang, Z. Q.; Xia, Z. M.; Chang, C. R.; Ma, Y. Y.; Qu, Y. Q. Mechanistic insights on ternary Ni2-xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv.Funct.Mater. 2016, 26, 6785–6796.Google Scholar
  24. [24]
    Liu, Y. D.; Ren, L.; Zhang, Z.; Qi, X.; Li, H. X.; Zhong, J. X. 3D binder-free MoSe2 nanosheets/carbon cloth electrodes for efficient and stable hydrogen evolution prepared by simple electrophoresis deposition strategy. Sci.Rep. 2016, 6, 22516.Google Scholar
  25. [25]
    Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Zhang, X. H.; Han, J. C.; Wang, X. J.; Zhang, Z. H.; Xu, P.; Zhang, P. et al. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv.Mater. 2017, 29, 1700311.Google Scholar
  26. [26]
    Liu, Z. Q.; Zhang, X.; Gong, Y.; Lu, Q. P.; Zhang, Z. C.; Cheng, H. F.; Ma, Q. L.; Chen, J. Z.; Zhao, M. T.; Chen, B. et al. Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Res. 2019, 12, 1301–1305.Google Scholar
  27. [27]
    Kim, Y.; Jackson, D. H. K.; Lee, D.; Choi, M.; Kim, T. W.; Jeong, S. Y.; Chae, H. J.; Kim, H. W.; Park, N.; Chang, H. et al. In situ electrochemical activation of atomic layer deposition coated MoS2 basal planes for efficient hydrogen evolution reaction. Adv.Funct.Mater. 2017, 27, 1701825.Google Scholar
  28. [28]
    Deng, S.; Luo, M.; Ai, C.; Zhang, Y.; Liu, B.; Huang, L.; Jiang, Z.; Zhang, Q.; Gu, L.; Lin, S. et al. Synergistic doping and intercalation: Realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction. Angew. Chem., Int. Ed.2019, 58, 16289–16296.Google Scholar
  29. [29]
    Gupta, U.; Rao, C. N. R. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy2017, 41, 49–65.Google Scholar
  30. [30]
    Wang, G.; Tao, J. Y.; Zhang, Y. J.; Wang, S. P.; Yan, X. J.; Liu, C. C.; Hu, F.; He, Z. Y.; Zuo, Z. J.; Yang, X. W. Engineering two-dimensional mass-transport channels of the MoS2 nanocatalyst toward improved hydrogen evolution performance. ACS Appl.Mater.Interfaces2018, 10, 25409–25414.Google Scholar
  31. [31]
    Yang, T.; Bao, Y.; Xiao, W.; Zhou, J.; Ding, J.; Feng, Y. P.; Loh, K. P.; Yang, M.; Wang, S. J. Hydrogen evolution catalyzed by a molybdenum sulfide two-dimensional structure with active basal planes. ACS Appl.Mater.Interfaces2018, 10, 22042–22049.Google Scholar
  32. [32]
    Li, B.; Jiang, L.; Li, X.; Cheng, Z. H.; Ran, P.; Zuo, P.; Qu, L. T.; Zhang, J. T.; Lu, Y. F. Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production. Adv.Funct.Mater. 2019, 29, 1806229.Google Scholar
  33. [33]
    Hinnemann, B.; Moses, P. G.; Bonde, J.; Joergensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Noerskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. ChemInform2005, 36, 5308–5309.Google Scholar
  34. [34]
    Liu, Y. Y.; Wu, J. J.; Hackenberg, K. P.; Zhang, J.; Wang, Y. M.; Yang, Y. C.; Keyshar, K.; Gu, J.; Ogitsu, T.; Vajtai, R. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat.Energy2017, 2, 17127.Google Scholar
  35. [35]
    Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science2017, 355, eaad4998.Google Scholar
  36. [36]
    Liu, P. T.; Zhu, J. Y.; Zhang, J. Y.; Xi, P. X.; Tao, K.; Gao, D. Q.; Xue, D. S. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Lett. 2017, 2, 745–752.Google Scholar
  37. [37]
    Benson, J.; Li, M. X.; Wang, S. B.; Wang, P.; Papakonstantinou, P. Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl.Mater.Interfaces2015, 7, 14113–14122.Google Scholar
  38. [38]
    Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv.Mater. 2013, 25, 756–760.Google Scholar
  39. [39]
    Zhao, X.; Zhu, H.; Yang, X. R. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale2014, 6, 10680–10685.Google Scholar
  40. [40]
    Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 2005, 77, 1–45.Google Scholar
  41. [41]
    Dubovoy, V.; Ganti, A.; Zhang, T.; Al-Tameemi, H.; Cerezo, J. D.; Boyd, J. M.; Asefa, T. One-pot hydrothermal synthesis of benzalkonium-templated mesostructured silica antibacterial agents. J.Am.Chem.Soc. 2018, 140, 13534–13537.Google Scholar
  42. [42]
    Yoo, H. M.; Lee, S. Y.; Park, S. J. Ordered nanoporous carbon for increasing CO2 capture. J.Solid State Chem. 2013, 197, 361–365.Google Scholar
  43. [43]
    Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J.Am.Chem.Soc. 2019, 141, 7073–7080.Google Scholar
  44. [44]
    Amiinu, I. S.; Pu, Z. H.; Liu, X. B.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H. N.; Mu, S. C. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv.Funct.Mater. 2017, 27, 1702300.Google Scholar
  45. [45]
    Li, S. Z.; Chen, T.; Wen, J.; Gui, P. B.; Fang, G. J. In situ grown Ni9S8 nanorod/O-MoS2 nanosheet nanocomposite on carbon cloth as a free binder supercapacitor electrode and hydrogen evolution catalyst. Nanotechnology2017, 28, 445407.Google Scholar
  46. [46]
    Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule2017, 1, 383–393.Google Scholar
  47. [47]
    Qin, S.; Lei, W. W.; Liu, D.; Chen, Y. Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance. J.Mater.Chem.A2016, 4, 1440–1445.Google Scholar
  48. [48]
    Wang, W. H.; Kuai, L.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A. P.; Huotari, S.; Yu, M. K.; Geng, B. Y. Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)- rich surfaces for superior bifunctional oxygen electrocatalysis. Angew.Chem., Int.Ed. 2017, 56, 14977–14981.Google Scholar
  49. [49]
    Wang, Z. C.; Chen, W.; Han, Z. L.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D. K.; Chen, Y.; Huang, S. M. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254–1262.Google Scholar
  50. [50]
    Zhou, X. S.; Wan, L. J.; Guo, Y. G. Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale2012, 4, 5868–5871.Google Scholar
  51. [51]
    Zhang, Y. F.; Zuo, L. Z.; Huang, Y. P.; Zhang, L. S.; Lai, F. L.; Fan, W.; Liu, T. X. In-situ growth of few-layered MoS2 nanosheets on highly porous carbon aerogel as advanced electrocatalysts for hydrogen evolution reaction. ACS Sustainable Chem.Eng. 2015, 3, 3140–3148.Google Scholar
  52. [52]
    Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.Google Scholar
  53. [53]
    Luo, Y. T.; Li, X.; Cai, X. K.; Zou, X. L.; Kang, F. Y.; Cheng, H. M.; Liu, B. L. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano2018, 12, 4565–4573.Google Scholar
  54. [54]
    Baker, M. A.; Gilmore, R.; Lenardi, C.; Gissler, W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl.Surf.Sci. 1999, 150, 255–262.Google Scholar
  55. [55]
    Farr, J. P. G. Molybdenum disulphide in lubrication. A review. Wear1975, 35, 1–22.Google Scholar
  56. [56]
    Shao, J.; Gao, T.; Qu, Q. T.; Shi, Q.; Zuo, Z. C.; Zheng, H. H. Ultrafast Li-storage of MoS2 nanosheets grown on metal-organic framework-derived microporous nitrogen-doped carbon dodecahedrons. J.Power Sources2016, 324, 1–7.Google Scholar
  57. [57]
    Lai, F. L.; Miao, Y. E.; Huang, Y. P.; Zhang, Y. F.; Liu, T. X. Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction. ACS Appl.Mater. 2016, 8, 3558–3566.Google Scholar
  58. [58]
    Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci.Rep. 2015, 5, 13801.Google Scholar
  59. [59]
    Ren, L. M.; Wang, C.; Li, W.; Dong, R. H.; Sun, H. X.; Liu, N.; Geng, B. Y. Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochim.Acta2019, 318, 42–50.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shaojie Lu
    • 1
  • Wenjing Wang
    • 1
  • Shengshuang Yang
    • 1
  • Wei Chen
    • 1
    Email author
  • Zhongbin Zhuang
    • 3
  • Wenjing Tang
    • 1
  • Caihong He
    • 1
  • Jiajing Qian
    • 1
  • Dekun Ma
    • 1
  • Yun Yang
    • 1
  • Shaoming Huang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouChina
  2. 2.School of Materials and EnergyGuangdong University of TechnologyGuangzhouChina
  3. 3.State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations