Advertisement

Nano Research

, Volume 12, Issue 12, pp 3101–3108 | Cite as

Water-induced hydrogenation of graphene/metal interfaces at room temperature: Insights on water intercalation and identification of sites for water splitting

  • Guangyu He
  • Qi Wang
  • Hak Ki Yu
  • Daniel Farías
  • Yingchun LiuEmail author
  • Antonio PolitanoEmail author
Research Article

Abstract

Though it is well recognized that the space between graphene cover and the metal substrate can act as a two-dimensional (2D) nanoreactor, several issues are still unresolved, including the role of the metal substrate, the mechanisms ruling water intercalation and the identification of sites at which water is decomposed. Here, we solve these issues by means of density functional theory and high-resolution electron energy loss spectroscopy experiments carried out on graphene grown on (111)-oriented Cu foils. Specifically, we observe decomposition of H2O at room temperature with only H atoms forming bonds with graphene and with buried OH groups underneath the graphene cover. Our theoretical model discloses physicochemical mechanisms ruling the migration and decomposition of water on graphene/Cu. We discover that the edge of graphene can be easily saturated by H through decomposition of H2O, which allows H2O to migrate in the subsurface region from the decoupled edge, where H2O decomposes at room temperature. Hydrogen atoms produced by the decomposition of H2O initially form a chemical bond with graphene for the lower energy barrier compared with other routes. These findings are essential to exploit graphene/Cu interfaces in catalysis and in energy-related applications.

Keywords

graphene/metal interfaces intercalation water splitting room temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21676232 and 21673206). A. P. thanks Danil W. Boukhvalov for scientific discussions and Vito Fabio for technical support for the HREELS experiments. D. F. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the Maria de Maeztu Programme for Units of Excellence in R&D (No. MDM-2014-0377) and MINECO project MAT2015-65356-C3-3-R.

Supplementary material

12274_2019_2561_MOESM1_ESM.pdf (2 mb)
Water-induced hydrogenation of graphene/metal interfaces at room temperature: Insights on water intercalation and identification of sites for water splitting

References

  1. [1]
    Son, G. C.; Hwang, D. K.; Jang, J.; Chee, S. S.; Cho, K.; Myoung, J. M.; Ham, M. H. Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Res.2019, 12, 19–23.Google Scholar
  2. [2]
    Nilsson, L.; Andersen, M.; Balog, R.; Lægsgaard, E.; Hofmann, P.; Besenbacher, F.; Hammer, B.; Stensgaard, I.; Hornekær, L. Graphene coatings: Probing the limits of the one atom thick protection layer. ACS Nano2012, 6, 10258–10266.Google Scholar
  3. [3]
    Ran, J.; Chu, C. Q.; Pan, T.; Ding, L.; Cui, P.; Fu, C. F.; Zhang, C. L.; Xu, T. W. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes. J. Mater. Chem. A2019, 7, 8085–8091.Google Scholar
  4. [4]
    Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small2011, 7, 1876–1902.Google Scholar
  5. [5]
    Martinez Gutierrez, D.; Di Pierro, A.; Pecchia, A.; Sandonas, L. M.; Gutierrez, R.; Bernal, M.; Mortazavi, B.; Cuniberti, G.; Saracco, G.; Fina, A. Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions-density functional tight-binding study. Nano Res.2019, 12, 791–799.Google Scholar
  6. [6]
    Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res.2018, 11, 1124–1134.Google Scholar
  7. [7]
    Politano, A.; Chiarello, G. Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: A comparative study. Nano Res.2015, 8, 1847–1856.Google Scholar
  8. [8]
    Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science2012, 335, 442–444.Google Scholar
  9. [9]
    Feng, X. F.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc.2012, 134, 5662–5668.Google Scholar
  10. [10]
    Fu, Q.; Bao, X. H. Catalysis on a metal surface with a graphitic cover. Chin. J. Catal.2015, 36, 517–519.Google Scholar
  11. [11]
    Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem., Int. Ed.2012, 51, 4856–4859.Google Scholar
  12. [12]
    Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol.2016, 11, 218–230.Google Scholar
  13. [13]
    Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc.2010, 132, 8175–8179.Google Scholar
  14. [14]
    Gao, L. J.; Fu, Q.; Li, J. M.; Qu, Z. P.; Bao, X. H. Enhanced CO oxidation reaction over Pt nanoparticles covered with ultrathin graphitic layers. Carbon2016, 101, 324–330.Google Scholar
  15. [15]
    Ferrighi, L.; Di Valentin, C. Oxygen reactivity on pure and B-doped graphene over crystalline Cu(111). Effects of the dopant and of the metal support. Surf. Sci.2015, 634, 68–75.Google Scholar
  16. [16]
    Zhang, Y. H.; Fu, Q.; Cui, Y.; Mu, R. T.; Jin, L.; Bao, X. H. Enhanced reactivity of graphene wrinkles and their function as nanosized gas inlets for reactions under graphene. Phys. Chem. Chem. Phys.2013, 15, 19042–19048.Google Scholar
  17. [17]
    Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol.2013, 8, 594–601.Google Scholar
  18. [18]
    Politano, A.; Cattelan, M.; Boukhvalov, D. W.; Campi, D.; Cupolillo, A.; Agnoli, S.; Apostol, N. G.; Lacovig, P.; Lizzit, S.; Farías, D. et al. Unveiling the mechanisms leading to H2 production promoted by water decomposition on epitaxial graphene at room temperature. ACS Nano2016, 10, 4543–4549.Google Scholar
  19. [19]
    Politano, A.; Marino, A. R.; Formoso, V.; Chiarello, G. Water adsorption on graphene/Pt(111) at room temperature: A vibrational investigation. AIP Adv.2010, 1, 042130.Google Scholar
  20. [20]
    Politano, A.; Chiarello, G. Periodically rippled graphene on Ru(0001): A template for site-selective adsorption of hydrogen dimers via water splitting and hydrogen-spillover at room temperature. Carbon2013, 61, 412–417.Google Scholar
  21. [21]
    Zhao, W.; Carey, S. J.; Mao, Z. T.; Campbell, C. T. Adsorbed hydroxyl and water on Ni(111): Heats of formation by calorimetry. ACS Catal.2018, 8, 1485–1489.Google Scholar
  22. [22]
    Lew, W.; Crowe, M. C.; Karp, E.; Lytken, O.; Farmer, J. A.; Árnadóttir, L.; Schoenbaum, C.; Campbell, C. T. The energy of adsorbed hydroxyl on Pt(111) by microcalorimetry. J. Phys. Chem. C2011, 115, 11586–11594.Google Scholar
  23. [23]
    Fisher, G. B.; Sexton, B. A. Identification of an adsorbed hydroxyl species on the Pt(111) surface. Phys. Rev. Lett.1980, 44, 683–686.Google Scholar
  24. [24]
    Revilla-López, G.; Blonski, P.; López, N. Free energy assessment of water structures and their dissociation on Ru(0001). J. Phys. Chem. C2015, 119, 5478–5483.Google Scholar
  25. [25]
    Jiang, B.; Ren, X. F.; Xie, D. Q.; Guo, H. Enhancing dissociative chemisorption of H2O on Cu(111) via vibrational excitation. Proc. Natl. Acad. Sci. USA2012, 109, 10224–10227.Google Scholar
  26. [26]
    Nie, S.; Wofford, J. M.; Bartelt, N. C.; Dubon, O. D.; McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B2011, 84, 155425.Google Scholar
  27. [27]
    Yu, H. K.; Balasubramanian, K.; Kim, K.; Lee, J. L.; Maiti, M.; Ropers, C.; Krieg, J.; Kern, K.; Wodtke, A. M. Chemical vapor deposition of graphene on a “peeled-off” epitaxial Cu(111) foil: A simple approach to improved properties. ACS Nano2014, 8, 8636–8643.Google Scholar
  28. [28]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter.2009, 21, 395502.Google Scholar
  29. [29]
    Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc.2014, 136, 3040–3047.Google Scholar
  30. [30]
    Chen, W.; Cui, P.; Zhu, W. G.; Kaxiras, E.; Gao. Y. F.; Zhang, Z. Y. Atomistic mechanisms for bilayer growth of graphene on metal substrates. Phys. Rev. B2015, 91, 045408.Google Scholar
  31. [31]
    Wu, P.; Zhai, X. F.; Li, Z. Y.; Yang, J. L. Bilayer graphene growth via a penetration mechanism. J. Phys. Chem. C2014, 118, 6201–6206.Google Scholar
  32. [32]
    Wong, K.; Kang, S. J.; Bielawski, C. W.; Ruoff, R. S.; Kwak, S. K. First-principles study of the role of O2 and H2O in the decoupling of graphene on Cu(111). J. Am. Chem. Soc.2016, 138, 10986–10994.Google Scholar
  33. [33]
    Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano2012, 6, 3243–3250.Google Scholar
  34. [34]
    Politano, A.; Yu, H. K.; Farías, D.; Chiarello, G. Multiple acoustic surface plasmons in graphene/Cu(111) contacts. Phys. Rev. B2018, 97, 035414.Google Scholar
  35. [35]
    Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1–308.Google Scholar
  36. [36]
    Ibach, H.; Mills, D. L. Electron Energy Loss Spectroscopy and Surface Vibrations; Academic Press: New York, 1982.Google Scholar
  37. [37]
    Yamamoto, S.; Andersson, K.; Bluhm, H.; Ketteler, G.; Starr, D. E.; Schiros, T.; Ogasawara, H.; Pettersson, L. G. M.; Salmeron, M.; Nilsson, A. Hydroxyl-induced wetting of metals by water at near-ambient conditions. J. Phys. Chem. C2007, 111, 7848–7850.Google Scholar
  38. [38]
    Tian, J. F.; Cao, H. L.; Wu, W.; Yu, Q. K.; Chen, Y. P. Direct imaging of graphene edges: Atomic structure and electronic scattering. Nano Lett.2011, 11, 3663–3668.Google Scholar
  39. [39]
    Phark, S. H.; Borme, J.; Vanegas, A. L.; Corbetta, M.; Sander, D.; Kirschner, J. Atomic structure and spectroscopy of graphene edges on Ir(111). Phys. Rev. B2012, 86, 045442.Google Scholar
  40. [40]
    Nilsson, L.; Andersen, M.; Hammer, B.; Stensgaard, I.; Hornekær, L. Breakdown of the graphene coating effect under sequential exposure to O2 and H2S. J. Phys. Chem. Lett.2013, 4, 3774–3774.Google Scholar
  41. [41]
    Tang, Q. L.; Chen, Z. X. Density functional slab model studies of water adsorption on flat and stepped Cu surfaces. Surf. Sci.2007, 601, 954–964.Google Scholar
  42. [42]
    Yang, L.; Li, X. Y.; Zhang, G. Z.; Cui, P.; Wang, X. J.; Jiang, X.; Zhao, J.; Luo, Yi.; Jiang, J. Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures. Nat. Commun.2017, 8, 16049.Google Scholar
  43. [43]
    Young, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems; Wiley-Interscience: New York, 2001.Google Scholar
  44. [44]
    Wang, X. J.; Zhang, G. Z.; Wang, Z. W.; Yang, L.; Li, X. Y.; Jiang, J.; Luo, Y. Metal-enhanced hydrogenation of graphene with atomic pattern. Carbon2019, 143, 700–705.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryZhejiang UniversityHangzhouChina
  2. 2.Department of Materials Science and Engineering and Department of Energy Systems ResearchAjou UniversitySuwonRepublic of Korea
  3. 3.Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain
  4. 4.Instituto “Nicolás Cabrera” and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridSpain
  5. 5.Department of Physical and Chemical SciencesUniversity of L’AquilaL’AquilaItaly
  6. 6.CNR-IMM Istituto per la Microelettronica e MicrosistemiCataniaItaly

Personalised recommendations