Mechanical force-induced assembly of one-dimensional nanomaterials

  • Shiting Wu
  • Yuanyuan Shang
  • Anyuan CaoEmail author
Review Article


There have been intensive and continuous research efforts in large-scale controlled assembly of one-dimensional (1D) nanomaterials, since this is the most effective and promising route toward advanced functional systems including integrated nano-circuits and flexible electronic devices. To date, numerous assembly approaches have been reported, showing considerable progresses in developing a variety of 1D nanomaterial assemblies and integrated systems with outstanding performance. However, obstacles and challenges remain ahead. Here, in this review, we summarize most widely studied assembly approaches such as Langmuir-Blodgett technique, substrate release/stretching, substrate rubbing and blown bubble films, depending on three types of external forces: compressive, tensile and shear forces. We highlight the important roles of these mechanical forces in aligning 1D nanomaterials such as semiconducting nanowires and carbon nanotubes, and discuss each approach on their effectiveness in achieving high-degree alignment, distinct characteristics and major limitations. Finally, we point out possible research directions in this field including rational control on the orientation, density and registration, toward scale-up and cost-effective manufacturing, as well as novel assembled systems based on 1D heterojunctions and hybrid structures.


one-dimensional (1D) nanomaterials assembly compressive force tensile force shear force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 51802063). Y. Y. S. thanks the National Natural Science Foundation of China (No. 51872267), and A. Y. C. acknowledges the National Key R&D Program of China (No. 2016YFE0127300).


  1. [1]
    Kim, T.; Kang, S.; Heo, J.; Cho, S.; Kim, J. W.; Choe, A.; Walker, B.; Shanker, R.; Ko, H.; Kim, J. Y. Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices. Adv. Mater.2018, 30, 1800659.CrossRefGoogle Scholar
  2. [2]
    Huang, L.; Gao, Q. G.; Sun, L. D.; Dong, H.; Shi, S.; Cai, T.; Liao, Q.; Yan, C. H. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater.2018, 30, 1800596.CrossRefGoogle Scholar
  3. [3]
    Fang, Y. S.; Ding, K.; Wu, Z. C.; Chen, H. T.; Li, W. B.; Zhao, S.; Zhang, Y. L.; Wang, L.; Zhou, J.; Hu, B. Architectural engineering of nanowire network fine pattern for 30 µm wide flexible quantum dot light-emitting diode application. ACS Nano2016, 10, 10023–10030.CrossRefGoogle Scholar
  4. [4]
    Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature2001, 409, 66–69.CrossRefGoogle Scholar
  5. [5]
    LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. N. Self-sorted, aligned nanotube networks for thin-film transistors. Science2008, 321, 101–104.CrossRefGoogle Scholar
  6. [6]
    Su, Y. D.; Liu, C.; Brittman, S.; Tang, J. Y.; Fu, A.; Kornienko, N.; Kong, Q.; Yang, P. D. Single-nanowire photoelectrochemistry. Nat. Nanotechnol.2016, 11, 609–612.CrossRefGoogle Scholar
  7. [7]
    Ding, L.; Zhang, Z. Y.; Liang, S. B.; Pei, T.; Wang, S.; Li, Y.; Zhou, W. W.; Liu, J.; Peng, L. M. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun.2012, 3, 677.CrossRefGoogle Scholar
  8. [8]
    Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature2007, 449, 885–889.CrossRefGoogle Scholar
  9. [9]
    Tang, J. Y.; Huo, Z. Y.; Brittman, S.; Gao, H. W.; Yang, P. D. Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol.2011, 6, 568–572.CrossRefGoogle Scholar
  10. [10]
    Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett.2008, 8, 3456–3460.CrossRefGoogle Scholar
  11. [11]
    Xiao, F. X.; Miao, J. W.; Tao, H. B.; Hung, S. F.; Wang, H. Y.; Yang, H. B.; Chen, J. Z.; Chen, R.; Liu, B. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. Small2015, 11, 2115–2131.CrossRefGoogle Scholar
  12. [12]
    Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano2013, 7, 6156–6161.CrossRefGoogle Scholar
  13. [13]
    Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 Gpa. Nat. Nanotechnol.2018, 13, 589–595.CrossRefGoogle Scholar
  14. [14]
    Zhang, R. F.; Zhang, Y. Y.; Wei, F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc. Chem. Res.2017, 50, 179–189.CrossRefGoogle Scholar
  15. [15]
    Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater.2011, 23, 3387–3391.CrossRefGoogle Scholar
  16. [16]
    Lieber, C. M. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull.2011, 36, 1052–1063.CrossRefGoogle Scholar
  17. [17]
    Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature2002, 415, 617–620.CrossRefGoogle Scholar
  18. [18]
    He, L.; Sun, X. F.; Zhang, H.; Shao, F. W. G-quadruplex nanowires to direct the efficiency and selectivity of electrocatalytic CO2 reduction. Angew. Chem., Int. Ed.2018, 57, 12453–12457.CrossRefGoogle Scholar
  19. [19]
    Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q.; Sunkara, M.; Spurgeon, J. M. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem., Int. Ed.2017, 56, 3645–3649.CrossRefGoogle Scholar
  20. [20]
    Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed.2016, 55, 6680–6684.CrossRefGoogle Scholar
  21. [21]
    Xu, K.; Cheng, H.; Lv, H. F.; Wang, J. Y.; Liu, L. Q.; Liu, S.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater.2018, 30, 1703322.CrossRefGoogle Scholar
  22. [22]
    Zhu, Y. P.; Ma, T. Y.; Jaroniec, M.; Qiao, S. Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem., Int. Ed.2017, 56, 1324–1328.CrossRefGoogle Scholar
  23. [23]
    Gu, T. H.; Agyeman, D. A.; Shin, S. J.; Jin, X. Y.; Lee, J. M.; Kim, H.; Kang, Y. M.; Hwang, S. J. α-MnO2 nanowire-anchored highly oxidized cluster as a catalyst for Li-O2 batteries: Superior electrocatalytic activity and high functionality. Angew. Chem., Int. Ed.2018, 57, 15984–15989.CrossRefGoogle Scholar
  24. [24]
    Xiao, W.; Zhou, J.; Yu, L.; Wang, D. H.; Lou, X. W. Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties. Angew. Chem., Int. Ed.2016, 55, 7427–7431.CrossRefGoogle Scholar
  25. [25]
    Wang, L. B.; Yang, H. L.; Liu, X. X.; Zeng, R.; Li, M.; Huang, Y. H.; Hu, X. L. Constructing hierarchical tectorum-like-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem., Int. Ed.2017, 56, 1105–1110.CrossRefGoogle Scholar
  26. [26]
    Zou, M. C.; Ma, Z. M.; Wang, Q. F.; Yang, Y. B.; Wu, S. T.; Yang, L. S.; Hu, S.; Xu, W. J.; Han, P. C.; Zou R. Q. et al. Coaxial TiO2-carbon nanotube sponges as compressible anodes for lithium-ion batteries. J. Mater. Chem. A2016, 4, 7398–7405.CrossRefGoogle Scholar
  27. [27]
    Shi, E. Z.; Li, H. B.; Xu, W. J.; Wu, S. T.; Wei, J. Q.; Fang, Y.; Cao, A. Y. Improvement of graphene-Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy2015, 17, 216–223.CrossRefGoogle Scholar
  28. [28]
    Shahid, M.; Cheng, J.; Li, T. J.; Khan, M. A.; Wang, Y. T.; Hu, Y.; Zhang, M. F.; Yang, J.; Aziz, H. S.; Wan, C. L. et al. High photodetectivity of low-voltage flexible photodetectors assembled with hybrid aligned nanowire arrays. J. Mater. Chem. C2018, 6, 6510–6519.CrossRefGoogle Scholar
  29. [29]
    Zhang, K.; Li, J.; Fang, Y. S.; Luo, B. B.; Zhang, Y. L.; Li, Y. Q.; Zhou, J.; Hu, B. Unraveling the solvent induced welding of silver nanowires for high performance flexible transparent electrodes. Nanoscale2018, 10, 12981–12990.CrossRefGoogle Scholar
  30. [30]
    Yang, Z.; Wang, M. Q.; Zhao, Q.; Qiu, H. W.; Li, J. J.; Li, X. M.; Shao, J. Y. Dielectrophoretic assembled single and parallel aligned Ag nanowire/ZnO branched nanorods heteronanowires UV photo-detectors. ACS Appl. Mater. Interfaces2017, 9, 22837–22845.CrossRefGoogle Scholar
  31. [31]
    Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater.2010, 9, 821–826.CrossRefGoogle Scholar
  32. [32]
    Liu, X.; Long, Y. Z.; Liao, L.; Duan, X. F.; Fan, Z. Y. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano2012, 6, 1888–1900.CrossRefGoogle Scholar
  33. [33]
    Gao, W.; Ota, H. Kiriya, D.; Takei, K. Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res.2019, 52, 523–533.CrossRefGoogle Scholar
  34. [34]
    Jia, C. C.; Lin, Z. Y.; Huang, Y.; Duan, X. F. Nanowire electronics: From nanoscale to macroscale. Chem. Rev.2019, 119, 9074–9135.CrossRefGoogle Scholar
  35. [35]
    Hu, H. B.; Wang, S. C.; Wang, S. C.; Liu, G. W.; Cao, T.; Long, Y. Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater.2019, 29, 1902922.CrossRefGoogle Scholar
  36. [36]
    Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science2006, 313, 1100–1104.CrossRefGoogle Scholar
  37. [37]
    Yu, G. H.; Lieber, C. M. Assembly and integration of semiconductor nanowires for functional nanosystems. Pure Appl. Chem.2010, 82, 2295–2314.CrossRefGoogle Scholar
  38. [38]
    Timko, B. P.; Cohen-Karni, T.; Yu, G. H.; Qing, Q.; Tian, B. Z.; Lieber, C. M. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett.2009, 9, 914–918.CrossRefGoogle Scholar
  39. [39]
    Kwiat, M.; Cohen, S.; Pevzner, A.; Patolsky, F. Large-scale ordered 1D-nanomaterials arrays: Assembly or not? Nano Today2013, 8, 677–694.CrossRefGoogle Scholar
  40. [40]
    Miao, X.; Chabak, K.; Zhang, C.; Mohseni, P. K.; Walker, D. Jr.; Li, X. L. High-speed planar GaAs nanowire arrays with f max > 75 GHz by wafer-scale bottom-up growth. Nano Lett.2015, 15, 2780–2786.CrossRefGoogle Scholar
  41. [41]
    Tsivion, D.; Joselevich, E. Guided growth of horizontal gan nanowires on spinel with orientation-controlled morphologies. J. Phys. Chem. C2014, 118, 19158–19164.CrossRefGoogle Scholar
  42. [42]
    Wang, Q. S.; Li, J.; Lei, Y.; Wen, Y.; Wang, Z. X.; Zhan, X. Y.; Wang, F.; Wang, F. M.; Huang, Y.; Xu, K. et al. Oriented growth of Pb1−xSnxTe nanowire arrays for integration of flexible infrared detectors. Adv. Mater.2016, 28, 3596–3601.CrossRefGoogle Scholar
  43. [43]
    Oksenberg, E.; Popovitz-Biro, R.; Rechav, K.; Joselevich, E. Guided growth of horizontal ZnSe nanowires and their integration into high-performance blue-UV photodetectors. Adv. Mater.2015, 27, 3999–4005.CrossRefGoogle Scholar
  44. [44]
    Feng, J. G.; Wu, Y. C.; Su, B.; Jiang, L. Large-scale assembly of organic highly crystalline multicomponent wires through surface-engineered condensation and crystallization. Small2015, 11, 5759–5765.CrossRefGoogle Scholar
  45. [45]
    Oksenberg, E.; Martí-Sánchez, S.; Popovitz-Biro, R.; Arbiol, J.; Joselevich, E. Surface-guided core-shell ZnSe@ZnTe nanowires as radial p-n heterojunctions with photovoltaic behavior. ACS Nano2017, 11, 6155–6166.CrossRefGoogle Scholar
  46. [46]
    Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun.2015, 6, 6099.CrossRefGoogle Scholar
  47. [47]
    Jin, Z.; Chu, H. B.; Wang, J. Y.; Hong, J. X.; Tan, W. C.; Li, Y. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett.2007, 7, 2073–2079.CrossRefGoogle Scholar
  48. [48]
    Freer, E. M.; Grachev, O.; Duan, X. F.; Martin, S.; Stumbo, D. P. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat. Nanotechnol.2010, 5, 525–530.CrossRefGoogle Scholar
  49. [49]
    Long, D. P.; Lazorcik, L. J.; Shashidhar, R. Magnetically directed self-assembly of carbon nanotube devices. Adv. Mater.2004, 16, 814–819.CrossRefGoogle Scholar
  50. [50]
    Yang, P. D. Wires on water. Nature2003, 425, 243–244.CrossRefGoogle Scholar
  51. [51]
    Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy. Nano Lett.2003, 3, 1229–1233.CrossRefGoogle Scholar
  52. [52]
    Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett.2003, 3, 1255–1259.CrossRefGoogle Scholar
  53. [53]
    Liu, J. W.; Zhu, J. H.; Zhang, C. L.; Liang, H. W.; Yu, S. H. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc.2010, 132, 8945–8952.CrossRefGoogle Scholar
  54. [54]
    Li, X. L.; Zhang, L.; Wang, X. R.; Shimoyama, I.; Sun, X. M.; Seo, W. S.; Dai, H. J. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc.2007, 129, 4890–4891.CrossRefGoogle Scholar
  55. [55]
    He, Z.; Jiang, H. J.; Wu, L. L.; Liu, J. W.; Wang, G.; Wang, X.; Wang, J. L.; Hou, Z. H.; Chen, G.; Yu, S. H. Real-time probing of nanowire assembly kinetics at the air-water interface by in situ synchrotron X-ray scattering. Angew. Chem., Int. Ed.2018, 57, 8130–8134.CrossRefGoogle Scholar
  56. [56]
    Bian, R. X.; Meng, L. L.; Zhang, M.; Chen, L. L.; Liu, H. Aligning one-dimensional nanomaterials by solution processes. ACS Omega2019, 4, 1816–1823.CrossRefGoogle Scholar
  57. [57]
    Liu, J. W.; Wang, J. L.; Wang, Z. H.; Huang, W. R.; Yu, S. H. Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem., Int. Ed.2014, 53, 13477–13482.CrossRefGoogle Scholar
  58. [58]
    Lv, J. W.; Hou, K.; Ding, D. F.; Wang, D. W.; Han, B.; Gao, X. Q.; Zhao, M.; Shi, L.; Guo, J.; Zheng, Y. L. et al. Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity. Angew. Chem., Int. Ed.2017, 56, 5055–5060.CrossRefGoogle Scholar
  59. [59]
    Wang, J. L.; Lu, Y. R.; Li, H. H.; Liu, J. W.; Yu, S. H. Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc.2017, 139, 9921–9926.CrossRefGoogle Scholar
  60. [60]
    Liu, Q.; Hao, Z. M.; Liao, X. B.; Pan, X. L.; Li, S. X.; Xu, L.; Mai, L. Q. Langmuir-Blodgett nanowire devices for in situ probing of zinc-ion batteries. Small2019, 15, 1902141.CrossRefGoogle Scholar
  61. [61]
    Guo, Q. J.; Teng, X. W.; Rahman, S.; Yang, H. Patterned Langmuir-Blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. J. Am. Chem. Soc.2003, 125, 630–631.CrossRefGoogle Scholar
  62. [62]
    Cote, L. J.; Kim, F.; Huang, J. X. Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc.2009, 131, 1043–1049.CrossRefGoogle Scholar
  63. [63]
    Xu, F.; Durham III, J. W.; Wiley, B. J.; Zhu, Y. Strain-release assembly of nanowires on stretchable substrates. ACS Nano2011, 5, 1556–1563.CrossRefGoogle Scholar
  64. [64]
    Smith, M. K.; Jensen, K. E.; Pivak, P. A.; Mirica, K. A. Direct self-assembly of conductive nanorods of metal-organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater.2016, 28, 5264–5268.CrossRefGoogle Scholar
  65. [65]
    Durham III, J. W.; Zhu, Y. Fabrication of functional nanowire devices on unconventional substrates using strain-release assembly. ACS Appl. Mater. Interfaces2013, 5, 256–261.CrossRefGoogle Scholar
  66. [66]
    Bang, J.; Choi, J.; Xia, F.; Kwon, S. S.; Ashraf, A.; Park, W. I.; Nam, S. W. Assembly and densification of nanowire arrays via shrinkage. Nano Lett.2014, 14, 3304–3308.CrossRefGoogle Scholar
  67. [67]
    Hsieh, G. W.; Wang, J. J.; Ogata, K.; Robertson, J.; Hofmann, S.; Milne, W. I. Stretched contact printing of one-dimensional nanostructures for hybrid inorganic-organic field effect transistors. J. Phys. Chem. C2012, 116, 7118–7125.CrossRefGoogle Scholar
  68. [68]
    Pletsch, H.; Tebbe, M.; Dulle, M.; Förster, B.; Fery, A.; Förster, S.; Greiner, A.; Agarwal, S. Reversible gold nanorod alignment in mechano-responsive elastomers. Polymer2015, 66, 167–172.CrossRefGoogle Scholar
  69. [69]
    Vinod, T. P.; Taylor, J. M.; Konda, A.; Morin, S. A. Stretchable substrates for the assembly of polymeric microstructures. Small2017, 13, 1603350.CrossRefGoogle Scholar
  70. [70]
    Dong, J. J.; Abukhdeir, N. M.; Goldthorpe, I. A. Simple assembly of long nanowires through substrate stretching. Nanotechnology2015, 26, 485302.CrossRefGoogle Scholar
  71. [71]
    Ji, C. Y.; Li, H. B.; Zhang, L. H.; Liu, Y.; Li, Y.; Jia, Y.; Li, Z.; Li, P. X.; Shi, E. Z.; Wei, J. Q. et al. Suspended, straightened carbon nanotube arrays by gel chapping. ACS Nano2011, 5, 5656–5661.CrossRefGoogle Scholar
  72. [72]
    Bian, R. X. Meng, L. L.; Guo, C.; Tang, Z. X.; Liu, H. A facile one-step approach for constructing multidimensional ordered nanowire micropatterns via fibrous elastocapillary coalescence. Adv. Mater.2019, 31, 1900534.CrossRefGoogle Scholar
  73. [73]
    Javey, A.; Nam; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett.2007, 7, 773–777.CrossRefGoogle Scholar
  74. [74]
    Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Yerushalmi, R.; Alley, R. L.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett.2008, 8, 20–25.CrossRefGoogle Scholar
  75. [75]
    Takahashi, T.; Takei, K.; Ho, J. C.; Chueh, Y. L.; Fan, Z. Y.; Javey, A. Monolayer resist for patterned contact printing of aligned nanowire arrays. J. Am. Chem. Soc.2009, 131, 2102–2103.CrossRefGoogle Scholar
  76. [76]
    Wang, X. F.; Xie, Z.; Huang, H. T.; Liu, Z.; Chen, D.; Shen, G. Z. Gas sensors, thermistor and photodetector based on ZnS nanowires. J. Mater. Chem.2012, 22, 6845–6850.CrossRefGoogle Scholar
  77. [77]
    Yerushalmi, R.; Jacobson, Z. A.; Ho, J. C.; Fan, Z. Y.; Javey, A. Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett.2007, 91, 203104.CrossRefGoogle Scholar
  78. [78]
    Chang, Y. K.; Hong, F. C. N. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing. Nanotechnology2009, 20, 195302.CrossRefGoogle Scholar
  79. [79]
    Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol.2013, 8, 329–335.CrossRefGoogle Scholar
  80. [80]
    Weiss, N. O.; Duan, X. F. Untangling nanowire assembly. Nat. Nanotechnol.2013, 8, 312–313.CrossRefGoogle Scholar
  81. [81]
    Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science2001, 291, 630–633.CrossRefGoogle Scholar
  82. [82]
    Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science2001, 294, 1313–1317.CrossRefGoogle Scholar
  83. [83]
    McAlpine, M. C.; Friedman, R. S.; Jin, S.; Lin, K. H.; Wang, W. U.; Lieber, C. M. High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett.2003, 3, 1531–1535.CrossRefGoogle Scholar
  84. [84]
    Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature2003, 425, 274–278.CrossRefGoogle Scholar
  85. [85]
    Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small2005, 1, 142–147.CrossRefGoogle Scholar
  86. [86]
    Assad, O.; Leshansky, A. M.; Wang, B.; Stelzner, T.; Christiansen, S.; Haick, H. Spray-coating route for highly aligned and large-scale arrays of nanowires. ACS Nano2012, 6, 4702–4712.CrossRefGoogle Scholar
  87. [87]
    Lee, H.; Seong, B.; Kim, J.; Jang, Y.; Byun, D. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing. Small2014, 10, 3918–3922.CrossRefGoogle Scholar
  88. [88]
    Blell, R.; Lin, X. F.; Lindström, T.; Ankerfors, M.; Pauly, M.; Felix, O.; Decher, G. Generating in-plane orientational order in multilayer films prepared by spray-assisted layer-by-layer assembly. ACS Nano2017, 11, 84–94.CrossRefGoogle Scholar
  89. [89]
    Huang, J. X.; Fan, R.; Connor, S.; Yang, P. D. One-step patterning of aligned nanowire arrays by programmed dip coating. Angew. Chem., Int. Ed.2007, 46, 2414–2417.CrossRefGoogle Scholar
  90. [90]
    Zhou, W. P.; Hu, A. M.; Bai, S.; Ma, Y.; Bridge, D. Anisotropic optical properties of large-scale aligned silver nanowire films via controlled coffee ring effects. RSC Adv.2015, 29, 39103–39109.CrossRefGoogle Scholar
  91. [91]
    Dai, H.; Ding, R. Q.; Li, M. C.; Huang, J.; Li, Y. F.; Trevor, M. Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface. Sci. Rep.2014, 4, 6742.CrossRefGoogle Scholar
  92. [92]
    Wu, F.; Li, Z. D.; Ye, F.; Zhao, X. L.; Zhang, T. Yang, X. N. Aligned silver nanowires as transparent conductive electrodes for flexible optoelectronic devices. J. Mater. Chem. C2016, 4, 11074–11080.CrossRefGoogle Scholar
  93. [93]
    Li, B.; Zhang, C. C.; Jiang, B. B.; Han, W.; Lin, Z. Q. Flow-enabled self-assembly of large-scale aligned nanowires. Angew. Chem., Int. Ed.2015, 54, 4250–4254.CrossRefGoogle Scholar
  94. [94]
    Park, S.; Pitner, G.; Giri, G.; Koo, J. H.; Park, J.; Kim, K.; Wang, H. L.; Sinclair, R.; Wong, H. S. P.; Bao, Z. N. Large-area assembly of densely aligned single-walled carbon nanotubes using solution shearing and their application to field-effect transistors. Adv. Mater.2015, 27, 2656–2662.CrossRefGoogle Scholar
  95. [95]
    Collet, M.; Salomon, S.; Klein, N. Y.; Seichepine, F.; Vieu, C.; Nicu, L.; Larrieu, G. Large-scale assembly of single nanowires through capillary-assisted dielectrophoresis. Adv. Mater.2015, 27, 1268–1273.CrossRefGoogle Scholar
  96. [96]
    Chen, Y. R.; Hong, C. C.; Liou, T. M.; Hwang, K. C.; Guo, T. F. Roller-induced bundling of long silver nanowire networks for strong interfacial adhesion, highly flexible, transparent conductive electrodes. Sci. Rep.2017, 7, 16662.CrossRefGoogle Scholar
  97. [97]
    Ni, S. B.; Leemann, J.; Wolf, H.; Isa, L. Insights into mechanisms of capillary assembly. Faraday Discuss.2015, 181, 225–242.CrossRefGoogle Scholar
  98. [98]
    Flauraud, V.; Mastrangeli, M.; Bernasconi, G. D.; Butet, J.; Alexander, D. T. L.; Shahrabi, E.; Martin, O. J. F.; Brugger, J. Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol.2017, 12, 73–80.CrossRefGoogle Scholar
  99. [99]
    Ni, S. B.; Leemann, J.; Buttinoni, I.; Isa, L.; Wolf, H. Programmable colloidal molecules from sequential capillarity-assisted particle assembly. Sci. Adv.2016, 2, e1501779.CrossRefGoogle Scholar
  100. [100]
    Kang, S.; Kim, T.; Cho, S.; Lee, Y.; Choe, A.; Walker, B.; Ko, S. J.; Kim, J. Y.; Ko, H. Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Lett.2015, 15, 7933–7942.CrossRefGoogle Scholar
  101. [101]
    Meng, L. L.; Bian, R. X.; Guo, C.; Xu, B. J.; Liu, H.; Jiang, L. Aligning Ag nanowires by a facile bioinspired directional liquid transfer: Toward anisotropic flexible conductive electrodes. Adv. Mater.2018, 30, 1706938.CrossRefGoogle Scholar
  102. [102]
    Cho, S.; Kang, S.; Pandya, A.; Shanker, R.; Khan, Z.; Lee, Y.; Park, J.; Craig, S. L.; Ko, H. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano2017, 11, 4346–4357.CrossRefGoogle Scholar
  103. [103]
    Wang, J. J.; Fang, Z. Q.; Zhu, H. L.; Gao, B. Y.; Garner, S.; Cimo, P.; Barcikowski, Z.; Mignerey, A.; Hu, L. B. Flexible, transparent, and conductive defrosting glass. Thin Solid Films2014, 556, 13–17.CrossRefGoogle Scholar
  104. [104]
    Cai, J.; Li, X. H.; Ma, L.; Jiang, Y. G.; Zhang, D. Y. Facile large-scale alignment and assembly of conductive micro/nano particles by combining both flow shear and electrostatic interaction. Compos. Sci. Technol.2019, 171, 199–205.CrossRefGoogle Scholar
  105. [105]
    Yu, G. H.; Cao A. Y.; Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol.2007, 2, 372–377.CrossRefGoogle Scholar
  106. [106]
    Yu, G. H.; Li, X. L.; Lieber C. M.; Cao, A. Y. Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. J. Mater. Chem.2008, 18, 728–734.CrossRefGoogle Scholar
  107. [107]
    Wu, S. T.; Huang, K.; Shi, E. Z.; Xu, W. J.; Fang, Y.; Yang Y. B.; Cao, A. Y. Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control. ACS Nano2014, 8, 3522–3530.CrossRefGoogle Scholar
  108. [108]
    Wu, S. T.; Chen, D. Q.; Yuan, Y. J.; Cao, A. Y. Blown bubble assembly of ultralong 1D bismuth sulfide nanostructures with ordered alignment and shape control. Nanotechnology2018, 29, 395601.CrossRefGoogle Scholar
  109. [109]
    Wu, S. T.; Yang, L.; Zou, M. C.; Yang, Y. B.; Du, M. D.; Xu, W. J.; Yang, L. S.; Fang Y.; Cao, A. Y. Blown-bubble assembly and in situ fabrication of sausage-like graphene nanotubes containing copper nanoblocks. Nano Lett.2016, 16, 4917–4924.CrossRefGoogle Scholar
  110. [110]
    Wu, S. T.; Yang, L. S.; Wu, H. S.; Yuan, Y. J.; Ji, Z. G.; Cao, A. Y. Performance improvement of assembled multi-walled carbon nanotube network/Si solar cells decorated with metal nanoparticles. Chem. Select2018, 3, 9736–9742.Google Scholar
  111. [111]
    Wu, S. T.; Shi, E. Z.; Yang Y. B.; Xu, W. J.; Li, X. Y.; Cao, A. Y. Direct fabrication of carbon nanotube-graphene hybrid films by a blown bubble method. Nano Res.2015, 8, 1746–1754.CrossRefGoogle Scholar
  112. [112]
    Wu, S. T.; Yang, Y. B.; Li, Y. T.; Wang, C. H.; Xu, W. J.; Shi, E. Z.; Zou, M. C.; Yang, L. S.; Yang, X. D.; Li, Y. et al. Blown bubble assembly of graphene oxide patches for transparent electrodes in carbon-silicon solar cells. ACS Appl. Mater. Interfaces2015, 7, 28330–28336.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials & Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina
  2. 2.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  3. 3.School of Physics and MicroelectronicsZhengzhou UniversityZhengzhouChina

Personalised recommendations