Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage

  • Chen Lu
  • Zhenzhu Li
  • Zhou Xia
  • Haina Ci
  • Jingsheng Cai
  • Yingze Song
  • Lianghao Yu
  • Wanjian Yin
  • Shixue Dou
  • Jingyu SunEmail author
  • Zhongfan LiuEmail author
Research Article


Tin-based compounds are deemed as suitable anode candidates affording promising sodium-ion storages for rechargeable batteries and hybrid capacitors. However, synergistically tailoring the electrical conductivity and structural stability of tin-based anodes to attain durable sodium-ion storages remains challenging to date for its practical applications. Herein, metal-organic framework (MOF) derived SnSe/C wrapped within nitrogen-doped graphene (NG@SnSe/C) is designed targeting durable sodium-ion storage. NG@SnSe/C possesses favorable electrical conductivity and structure stability due to the “inner” carbon framework from the MOF thermal treatment and “outer” graphitic cage from the direct chemical vapor deposition synthesis. Consequently, NG@SnSe/C electrode can obtain a high reversible capacity of 650 mAh·g−1 at 0.05 A·g−1, a favorable rate performance of 287.8 mAh·g−1 at 5 A·g−1 and a superior cycle stability with a negligible capacity decay of 0.016% per cycle over 3,200 cycles at 0.4 A·g−1. Theoretical calculations reveal that the nitrogen-doping in graphene can stabilize the NG@SnSe/C structure and improve the electrical conductivity. The reversible Na-ion storage mechanism of SnSe is further investigated by in-situ X-ray diffraction/ex-situ transmission electron microscopy. Furthermore, assembled sodium-ion hybrid capacitor full-cells comprising our NG@SnSe/C anode and an active carbon cathode harvest a high energy/power density of 115.5 Wh·kg−1/5,742 W·kg−1, holding promise for next-generation energy storages.


SnSe nitrogen-doped graphene plasma-enhanced chemical vapor deposition conductivity sodium-ion storage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (No. 51702225), the National Key Research and Development Program (No. 2016YFA0200103), and Natural Science Foundation of Jiangsu Province (No. BK20170336). C. L., Z. Z. L., Z. X., H. N. C., Y. Z. S., L. H. Y., W. J. Y., J. Y. S., and Z. F. L. acknowledge the support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Suzhou, China.

Supplementary material

12274_2019_2551_MOESM1_ESM.pdf (2.5 mb)
Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage


  1. [1]
    Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.CrossRefGoogle Scholar
  2. [2]
    Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.CrossRefGoogle Scholar
  3. [3]
    Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.CrossRefGoogle Scholar
  4. [4]
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.CrossRefGoogle Scholar
  5. [5]
    Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.CrossRefGoogle Scholar
  6. [6]
    Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070–7072.CrossRefGoogle Scholar
  7. [7]
    Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.CrossRefGoogle Scholar
  8. [8]
    Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.CrossRefGoogle Scholar
  9. [9]
    Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.CrossRefGoogle Scholar
  10. [10]
    Lu, Y. Y.; Zhang, N.; Jiang, S.; Zhang, Y. D.; Zhou, M.; Tao, Z. L.; Archer, L. A.; Chen, J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide–graphene foam architecture. Nano Lett. 2017, 17, 3668–3674.CrossRefGoogle Scholar
  11. [11]
    Wang, X. G.; Li, Q. C.; Zhang, L.; Hu, Z. L.; Yu, L. H.; Jiang, T.; Lu, C.; Yan, C. L.; Sun, J. Y.; Liu, Z. F. Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater. 2018, 30, 1800963CrossRefGoogle Scholar
  12. [12]
    Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 2018, 11, 4614–4626.CrossRefGoogle Scholar
  13. [13]
    Xia, Z.; Sun, H.; He, X.; Sun, Z. T.; Lu, C.; Li, J.; Peng, Y.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy 2019, 60, 385–393.CrossRefGoogle Scholar
  14. [14]
    Wei, Z. X.; Wang, L.; Zhuo, M.; Ni, W.; Wang, H. X.; Ma, J. M. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J. Mater. Chem. A 2018, 6, 12185–12214.CrossRefGoogle Scholar
  15. [15]
    Liu, H.; Guo, H.; Liu, B.; Liang, M.; Lv, Z.; Adair, K. R.; Sun, X. L. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480.CrossRefGoogle Scholar
  16. [16]
    Wang, S. B.; Fang, Y. J.; Wang, X.; Lou, X. W. Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew. Chem., Int. Ed. 2019, 58, 760–763.CrossRefGoogle Scholar
  17. [17]
    Zhao, Y.; Guo, B. B.; Yao, Q. Q.; Li, J. X.; Zhang, J. S.; Hou, K.; Guan, L. H. A rational microstructure design of SnS2–carbon composites for superior sodium storage performance. Nanoscale 2018, 10, 7999–8008.CrossRefGoogle Scholar
  18. [18]
    Kim, Y.; Kim, Y.; Park, Y.; Jo, Y. N.; Kim, Y. J.; Choi, N. S.; Lee, K. T. SnSe alloy as a promising anode material for Na-ion batteries. Chem. Commun. 2015, 51, 50–53.CrossRefGoogle Scholar
  19. [19]
    Zhang, F.; Xia, C.; Zhu, J. J.; Ahmed, B.; Liang, H. F.; Velusamy, D. B.; Schwingenschlögl, U.; Alshareef, H. N. SnSe2 2D anodes for advanced sodium ion batteries. Adv. Energy Mater. 2016, 6, 1601188.CrossRefGoogle Scholar
  20. [20]
    Park, G. D.; Lee, J. H.; Kang, Y. C. Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process. Nanoscale 2016, 8, 11889–11896.CrossRefGoogle Scholar
  21. [21]
    Wang, W.; Li, P. H.; Zheng, H.; Liu, Q.; Lv, F.; Wu, J. D.; Wang, H.; Guo, S. J. Ultrathin layered snse nanoplates for low voltage, high-rate, and long-life alkali-ion batteries. Small 2017, 13, 1702228.CrossRefGoogle Scholar
  22. [22]
    Yuan, S.; Zhu, Y. H.; Li, W.; Wang, S.; Xu, D.; Li, L.; Zhang, Y.; Zhang, X. B. Surfactant-free aqueous synthesis of pure single-crystalline snse nanosheet clusters as anode for high energy- and power-density sodium-ion batteries. Adv. Mater. 2017, 29, 1602469.CrossRefGoogle Scholar
  23. [23]
    Chen, R. S.; Li, S. Z.; Liu, J. Y.; Li, Y. Y.; Ma, F.; Liang, J. S.; Chen, X.; Miao, Z. P.; Han, J. T.; Wang, T. Y. et al. Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochim. Acta 2018, 282, 973–980.CrossRefGoogle Scholar
  24. [24]
    Ren, X. C.; Wang, J. S.; Zhu, D. M.; Li, Q. W.; Tian, W. F.; Wang, L.; Zhang, J. B.; Miao, L.; Chu, P. K.; Huo, K. F. Sn-C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for highperformance sodium-ion battery anodes. Nano Energy 2018, 54, 322–330.CrossRefGoogle Scholar
  25. [25]
    Zhou, X. Y.; Chen, S. M.; Yang, J.; Bai, T.; Ren, Y. P.; Tian. H. Y. Metal–organic frameworks derived okra-like SnO2 encapsulated in nitrogen-doped graphene for lithium ion battery. ACS Appl. Mater. Interfaces 2017, 9, 14309–14318.CrossRefGoogle Scholar
  26. [26]
    Xiong, X. H.; Yang, C. H.; Wang, G. H.; Lin, Y. W.; Ou, X.; Wang, J. H.; Zhao, B. T.; Liu, M. L.; Lin, Z.; Huang, K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1757–1763.CrossRefGoogle Scholar
  27. [27]
    Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.CrossRefGoogle Scholar
  28. [28]
    Chao, D. L.; Ouyang, B.; Liang, P.; Huong, T. T. T.; Jia, G. C.; Huang, H.; Xia, X. H.; Rawat, R. S.; Fan, H. J. C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric Na-ion storage. Adv. Mater. 2018, 30, 1804833.CrossRefGoogle Scholar
  29. [29]
    Lu, Y.; Lu, Y. Y.; Niu, Z. Q.; Chen, J. Graphene-based nanomaterials for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702469.CrossRefGoogle Scholar
  30. [30]
    Hu, X. D.; Sun, X. H.; Yoo, S. J.; Evanko, B.; Fan, F. R.; Cai, S.; Zheng, C. M.; Hu, W. B.; Stucky, G. D. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy 2019, 56, 828–839.CrossRefGoogle Scholar
  31. [31]
    Bommier, C.; Ji, X. L. Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes. Small 2018, 14, 1703576.CrossRefGoogle Scholar
  32. [32]
    Lan, Y.; Zhou, J. B.; Xu, K. L.; Lu, Y.; Zhang, K. L.; Zhu, L. Q.; Qian, Y. T. Synchronous synthesis of Kirkendall effect induced hollow FeSe2/C nanospheres as anodes for high performance sodium ion batteries. Chem. Commun. 2018, 54, 5704–5707.CrossRefGoogle Scholar
  33. [33]
    Ge, P.; Hou, H. S.; Li, S. J.; Huang, L. P.; Ji, X. B. Three-dimensional hierarchical framework assembled by cobblestone-like CoSe2@C nanospheres for ultrastable sodium-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 14716–14726.CrossRefGoogle Scholar
  34. [34]
    Wan, M.; Zeng, R.; Chen, K. Y.; Liu, G. X.; Chen, W. L.; Wang, L. L.; Zhang, N.; Xue, L. H.; Zhang, W. X.; Huang, Y. H. Fe7Se8 nanoparticles encapsulated by nitrogen-doped carbon with high sodium storage performance and evolving redox reactions. Energy Storage Mater. 2018, 10, 114–121.CrossRefGoogle Scholar
  35. [35]
    Yang, X. M.; Zhang, J. L.; Wang, Z. G.; Wang, H. K.; Zhi, C. Y.; Yu, D. Y. W.; Rogach, A. Carbon-supported nickel selenide hollow nanowires as advanced anode materials for sodium-ion batteries. Small 2017, 14, 1702669.CrossRefGoogle Scholar
  36. [36]
    Tang, C. J.; Wei, X. J.; Cai, X. Y.; An, Q. Y.; Hu, P.; Sheng, J. Z.; Zhu, J. X.; Chou, S. L.; Wu, L. M.; Mai, L. Q. ZnSe microsphere/multiwalled carbon nanotube composites as high-rate and long-life anodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 19626–19632.CrossRefGoogle Scholar
  37. [37]
    Yin, H.; Qu, H. Q.; Liu, Z. T.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano Energy 2019, 58, 715–723.CrossRefGoogle Scholar
  38. [38]
    Zhou, J.; Chen, J. C.; Chen, M. X.; Wang, J.; Liu, X. Z.; Wei, B.; Wang, Z. C.; Li, J. J.; Gu, L.; Zhang, Q. H. et al. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv. Mater. 2019, 31, 1807874.CrossRefGoogle Scholar
  39. [39]
    Wu, C.; Dou, S. X.; Yu, Y. The state and challenges of anode materials based on conversion reactions for sodium storage. Small 2018, 14, 1703671.CrossRefGoogle Scholar
  40. [40]
    Yu, D. X.; Pang, Q.; Gao, Y.; Wei, Y. Y.; Wang, C. Z.; Chen, G.; Du, F. Hierarchical flower-like VS2 nanosheets–a high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater. 2018, 11, 1–7.CrossRefGoogle Scholar
  41. [41]
    Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.CrossRefGoogle Scholar
  42. [42]
    Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.CrossRefGoogle Scholar
  43. [43]
    Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.CrossRefGoogle Scholar
  44. [44]
    Shi, H. X.; Fang, Z. W.; Zhang, X.; Li, F.; Tang, Y. W.; Zhou, Y. M.; Wu, P.; Yu, G. H. Double-network nanostructured hydrogel-derived ultrafine Sn–Fe alloy in three-dimensional carbon framework for enhanced lithium storage. Nano Lett. 2018, 18, 3193–3198.CrossRefGoogle Scholar
  45. [45]
    Zhao, X.; Cai, W.; Yang, Y.; Song, X. D.; Neale, Z.; Wang, H. E.; Sui, J. H.; Cao, G. Z. MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 2018, 47, 224–234.CrossRefGoogle Scholar
  46. [46]
    Li, Y. Z.; Wang, H. W.; Huang, B. J.; Wang, L. B.; Wang, R.; He, B. B.; Gong, Y. S.; Hu, X. L. Mo2C-induced solid-phase synthesis of ultrathin MoS2 nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors. J. Mater. Chem. A 2018, 6, 14742–14751.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chen Lu
    • 1
  • Zhenzhu Li
    • 1
  • Zhou Xia
    • 1
  • Haina Ci
    • 1
    • 2
  • Jingsheng Cai
    • 1
  • Yingze Song
    • 1
  • Lianghao Yu
    • 1
  • Wanjian Yin
    • 1
  • Shixue Dou
    • 3
  • Jingyu Sun
    • 1
    • 2
    Email author
  • Zhongfan Liu
    • 1
    • 2
    • 4
    Email author
  1. 1.College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhouChina
  2. 2.Beijing Graphene Institute (BGI)BeijingChina
  3. 3.Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia
  4. 4.Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations