Nano Research

, Volume 12, Issue 12, pp 3044–3050 | Cite as

Development of a homogenous assay based on fluorescent imprinted nanoparticles for analysis of nitroaromatic compounds

  • Asma Elbelazi
  • Francesco CanfarottaEmail author
  • Joanna Czulak
  • Michael J. Whitcombe
  • Sergey Piletsky
  • Elena Piletska
Research Article


Herein we describe the development of a homogeneous assay for the detection of 4-nitroaniline (4-NA) and 2,4-dinitroaniline (2,4-diNA). This assay relies on fluorescent molecularly imprinted nanoparticles (nanoMIPs) which, upon interaction with the target analytes, generate a reduction in fluorescence emission intensity (quenching). This is due to a responsive fluorescent monomer (N-2-propenyl-(5-dimethylamino)-1-naphthalene sulphonamide) employed in the manufacture of the nanoMIPs which, by virtue of the imprinting process, is capable of selective interaction with the target analyte, thus giving rise to a quenching effect. Selectivity experiments showed excellent recognition properties toward the target molecule. Under optimal conditions, the fluorescence intensity of these nanoMIPs decreased as the concentration of the imprinted analyte increased from 10 nM to 2.71 μM. A linear relation between the negative logarithm of 4-NA or 2,4-diNA concentrations and the fluorescence intensity for both nanosystems was found (R2 = 0.991 and R2 = 0.9895), with excellent sensitivity (limit of detection (LOD) = 7 and 6 nM, respectively). Furthermore, both nanosystems have been successfully applied for detection of 4-NA or 2,4-diNA in tap water, with recoveries between 90% to 100.6% and 92% to 100.3%, respectively. Thanks to the versatility of the imprinting process, this nanosystem holds the potential for further development of several optical sensors for many other compounds.


molecularly imprinted polymers quenching homogeneous assay nitroaromatic compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Asma Elbelazi would like to express his gratitude to the Ministry of Higher Education and Scientific Research of Libya and Libyan Cultural Attaché in UK for the financial contribution to her PhD course.

Supplementary material

12274_2019_2550_MOESM1_ESM.pdf (1.6 mb)
Development of a homogenous assay based on fluorescent imprinted nanoparticles for analysis of nitroaromatic compounds


  1. [1]
    Wang, M. H.; De Vivo, B.; Lu, W. J.; Muniz-Miranda, M. Sensitive surface-enhanced Raman scattering (SERS) detection of nitroaromatic pollutants in water. Appl. Spectrosc.2014, 68, 784–788.CrossRefGoogle Scholar
  2. [2]
    Yazdi, A. S.; Mofazzeli, F.; Es’haghi, Z. Determination of 3-nitroaniline in water samples by directly suspended droplet three-phase liquid-phase microextraction using 18-crown-6 ether and high-performance liquid chromatography. J. Chromatogr. A2009, 1216, 5086–5091.CrossRefGoogle Scholar
  3. [3]
    Fan, Y. C.; Hu, Z. L.; Chen, M. L.; Tu, C. S.; Zhu, Y. Ionic liquid based dispersive liquid-liquid microextraction of aromatic amines in water samples. Chin. Chem. Lett.2008, 19, 985–987.CrossRefGoogle Scholar
  4. [4]
    Wu, T.; Wang, H. T.; Shen, B.; Du, Y. P.; Wang, X.; Wang, Z. P.; Zhang, C. J.; Miu, W. B. Determination of primary aromatic amines using immobilized nanoparticles based surface-enhanced Raman spectroscopy. Chin. Chem. Lett.2016, 27, 745–748.CrossRefGoogle Scholar
  5. [5]
    Guo, X. F.; Lv, J.; Zhang, W. D.; Wang, Q. J.; He, P. G.; Fang, Y. Z. Separation and determination of nitroaniline isomers by capillary zone electrophoresis with amperometric detection. Talanta2006, 69, 121–125.CrossRefGoogle Scholar
  6. [6]
    Dimou, A. D.; Sakkas, V. A.; Albanis, T. A. Photodegradation of trifluralin in natural waters and soils: Degradation kinetics and influence of organic matter. Int. J. Environ. Anal. Chem.2004, 84, 173–182.CrossRefGoogle Scholar
  7. [7]
    Busquets, R.; Jonsson, J. Å.; Frandsen, H.; Puignou, L.; Galceran, M. T.; Skog, K. Hollow fibre-supported liquid membrane extraction and LC-MS/MS detection for the analysis of heterocyclic amines in urine samples. Mol. Nutr. Food Res.2009, 53, 1496–1504.CrossRefGoogle Scholar
  8. [8]
    Mishra, S.; Singh, V.; Jain, A.; Verma, K. K. Simultaneous determination of ammonia, aliphatic amines, aromatic amines and phenols at ώg L-1 levels in environmental waters by solid-phase extraction of their benzoyl derivatives and gas chromatography-mass spectrometry. Analyst2001, 126, 1663–1668.CrossRefGoogle Scholar
  9. [9]
    Tong, C. L.; Guo, Y.; Liu, W. P. Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chemosphere2010, 81, 430–435.CrossRefGoogle Scholar
  10. [10]
    Yao, L. F.; He, H. B.; Feng, Y. Q.; Da, S. L. HPLC separation of positional isomers on a dodecylamine-N, N-dimethylenephosphonic acid modified zirconia stationary phase. Talanta2004, 64, 244–251.CrossRefGoogle Scholar
  11. [11]
    Wu, P. Y.; Liu, Y. H.; Li, Y.; Jiang, M.; Li, X. L.; Shi, Y. H.; Wang, J. A cadmium(II)-based metal-organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. J. Mater. Chem. A2016, 4, 16349–16355.CrossRefGoogle Scholar
  12. [12]
    Tominaga, Y.; Kubo, T.; Yasuda, K.; Kato, K.; Hosoya, K. Development of molecularly imprinted porous polymers for selective adsorption of gaseous compounds. Microporous Mesoporous Mater.2012, 156, 161–165.CrossRefGoogle Scholar
  13. [13]
    Tse Sum Bui, B.; Haupt, K. Molecularly imprinted polymers: Synthetic receptors in bioanalysis. Anal. Bioanal. Chem.2010, 398, 2481–2492.CrossRefGoogle Scholar
  14. [14]
    Jiang, S. Y.; Peng, Y.; Ning, B. A.; Bai, J. L.; Liu, Y. Y.; Zhang, N.; Gao, Z. X. Surface plasmon resonance sensor based on molecularly imprinted polymer film for detection of histamine. Sens. Actuators B: Chem.2015, 221, 15–21.CrossRefGoogle Scholar
  15. [15]
    Donato, L.; Algieri, C.; Rizzi, A.; Giorno, L. Kinetic study of tyrosinase immobilized on polymeric membrane. J. Membr. Sci.2014, 454, 346–350.CrossRefGoogle Scholar
  16. [16]
    Xu, X.; Duhoranimana, E.; Zhang, X. M. Preparation and characterization of magnetic molecularly imprinted polymers for the extraction of hexamethylenetetramine in milk samples. Talanta2017, 163, 31–38.CrossRefGoogle Scholar
  17. [17]
    Moczko, E.; Poma, A.; Guerreiro, A.; Perez De Vargas Sansalvador, I.; Caygill, S.; Canfarotta, F.; Whitcombe, M. J.; Piletsky, S. Surface-modified multifunctional MIP nanoparticles. Nanoscale2013, 5, 3733–3741.CrossRefGoogle Scholar
  18. [18]
    Wackerlig, J.; Lieberzeit, P. A. Molecularly imprinted polymer nanoparticles in chemical sensing—Synthesis, characterisation and application. Sens. Actuators B: Chem.2015, 207, 144–157.CrossRefGoogle Scholar
  19. [19]
    Canfarotta, F.; Waters, A.; Sadler, R.; McGill, P.; Guerreiro, A.; Papkovsky, D.; Haupt, K.; Piletsky, S. Biocompatibility and internalization of molecularly imprinted nanoparticles. Nano Res.2016, 9, 3463–3477.CrossRefGoogle Scholar
  20. [20]
    Canfarotta, F.; Czulak, J.; Betlem, K.; Sachdeva, A.; Eersels, K.; Van Grinsven, B.; Cleij, T. J.; Peeters, M. A novel thermal detection method based on molecularly imprinted nanoparticles as recognition elements. Nanoscale2018, 10, 2081–2089.CrossRefGoogle Scholar
  21. [21]
    Basozabal, I.; Guerreiro, A.; Gomez-Caballero, A.; Aranzazu Goicolea, M.; Barrio, R. J. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens. Bioelectron.2014, 58, 138–144.CrossRefGoogle Scholar
  22. [22]
    Canfarotta, F.; Czulak, J.; Guerreiro, A.; Cruz, A. G.; Piletsky, S.; Bergdahl, G. E.; Hedström, M.; Mattiasson, B. A novel capacitive sensor based on molecularly imprinted nanoparticles as recognition elements. Biosens. Bioelectron.2018, 120, 108–114.CrossRefGoogle Scholar
  23. [23]
    Chianella, I.; Guerreiro, A.; Moczko, E.; Caygill, J. S.; Piletska, E. V.; De Vargas Sansalvador, I. M. P.; Whitcombe, M. J.; Piletsky, S. A. Direct replacement of antibodies with molecularly imprinted polymer nanoparticles in ELISA—Development of a novel assay for vancomycin. Anal. Chem.2013, 85, 8462–8468.CrossRefGoogle Scholar
  24. [24]
    Smolinska-Kempisty, K.; Guerreiro, A.; Canfarotta, F.; Cáceres, C.; Whitcombe, M. J.; Piletsky, S. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format. Sci. Rep.2016, 6, 37638.CrossRefGoogle Scholar
  25. [25]
    Poma, A.; Guerreiro, A.; Whitcombe, M. J.; Piletska, E. V.; Turner, A. P. F.; Piletsky, S. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template—“Plastic antibodies”. Adv. Funct. Mater.2013, 23, 2821–2827.CrossRefGoogle Scholar
  26. [26]
    Rouhani, S.; Nahavandifard, F. Molecular imprinting-based fluorescent optosensor using a polymerizable 1,8-naphthalimide dye as a florescence functional monomer. Sens. Actuators B: Chem.2014, 197, 185–192.CrossRefGoogle Scholar
  27. [27]
    Lu, X.; Yang, Y. W.; Zeng, Y. B.; Li, L.; Wu, X. H. Rapid and reliable determination of p-nitroaniline in wastewater by molecularly imprinted fluorescent polymeric ionic liquid microspheres. Biosens. Bioelectron.2018, 99, 47–55.CrossRefGoogle Scholar
  28. [28]
    Chen, Z. H.; Álvarez-Pérez, M.; Navarro-Villoslada, F.; Moreno-Bondi, M. C.; Orellana, G. Fluorescent sensing of “quat” herbicides with a multifunctional pyrene-labeled monomer and molecular imprinting. Sens. Actuators B: Chem.2014, 191, 137–142.CrossRefGoogle Scholar
  29. [29]
    Inoue, Y.; Kuwahara, A.; Ohmori, K.; Sunayama, H.; Ooya, T.; Takeuchi, T. Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline. Biosens. Bioelectron.2013, 48, 113–119.CrossRefGoogle Scholar
  30. [30]
    Cheng, Y.; Jiang, P.; Lin, S.; Li, Y. N.; Dong, X. C. An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity. Sens. Actuators B: Chem.2014, 193, 838–843.CrossRefGoogle Scholar
  31. [31]
    Wang, W.; Gao, S. H.; Wang, B. H. Building fluorescent sensors by template polymerization: The preparation of a fluorescent sensor for D-fructose. Org. Lett.1999, 1, 1209–1212.CrossRefGoogle Scholar
  32. [32]
    Gao, S. H.; Wang, W.; Wang, B. H. Molecularly imprinted polymers as recognition elements in optical sensors. In Molecularly Imprinted Materials: Science and Technology. Yan, M. D.; Ramstrom, O., Eds.; Marcel Dekker: New York, 2005; pp 701–726.Google Scholar
  33. [33]
    Turner, N. W.; Holdsworth, C. I.; McCluskey, A.; Bowyer, M. C. N-2-propenyl-(5-dimethylamino)-1-naphthalene sulfonamide, a novel fluorescent monomer for the molecularly imprinted polymer-based detection of 2,4-dinitrotoluene in the gas phase. Aust. J. Chem.2012, 65, 1405–1412.CrossRefGoogle Scholar
  34. [34]
    Caddick, S.; Wilden, J. D.; Judd, D. B. Direct synthesis of sulfonamides and activated sulfonate esters from sulfonic acids. J. Am. Chem. Soc.2004, 126, 1024–1025.CrossRefGoogle Scholar
  35. [35]
    Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc.2016, 11, 443–455.CrossRefGoogle Scholar
  36. [36]
    Bolchi, C.; Valoti, E.; Straniero, V.; Ruggeri, P.; Pallavicini, M. From 2-aminomethyl-1,4-benzodioxane enantiomers to unichiral 2-cyano- and 2-carbonyl-substituted benzodioxanes via dichloroamine. J. Org. Chem.2014, 79, 6732–6737.CrossRefGoogle Scholar
  37. [37]
    Sun, X. C.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev.2015, 44, 8019–8061.CrossRefGoogle Scholar
  38. [38]
    Bagheri, M.; Masoomi, M. Y.; Morsali, A. Highly sensitive and selective ratiometric fluorescent metal-organic framework sensor to nitroaniline in presence of nitroaromatic compounds and VOCs. Sens. Actuators B: Chem.2017, 243, 353–360.CrossRefGoogle Scholar
  39. [39]
    Chen, N.; Ding, P.; Shi, Y.; Jin, T. Y.; Su, Y. Y.; Wang, H. Y.; He, Y. Portable and reliable surface-enhanced Raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal. Chem.2017, 89, 5072–5078.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Asma Elbelazi
    • 1
    • 2
  • Francesco Canfarotta
    • 3
    Email author
  • Joanna Czulak
    • 3
  • Michael J. Whitcombe
    • 1
  • Sergey Piletsky
    • 1
  • Elena Piletska
    • 1
  1. 1.Chemistry DepartmentUniversity of LeicesterLeicesterUK
  2. 2.Chemistry DepartmentUniversity of TripoliTripoliLibya
  3. 3.MIP Diagnostics Ltd.BedfordUK

Personalised recommendations