Skip to main content

Carbon nanotube micropillars trigger guided growth of complex human neural stem cells networks

Abstract

New strategies for spatially controlled growth of human neurons may provide viable solutions to treat and recover peripheral or spinal cord injuries. While topography cues are known to promote attachment and direct proliferation of many cell types, guided outgrowth of human neurites has been found difficult to achieve so far. Here, three-dimensional (3D) micropatterned carbon nanotube (CNT) templates are used to effectively direct human neurite stem cell growth. By exploiting the mechanical flexibility, electrically conductivity and texture of the 3D CNT micropillars, a perfect environment is created to achieve specific guidance of human neurites, which may lead to enhanced therapeutic effects within the injured spinal cord or peripheral nerves. It is found that the 3D CNT micropillars grant excellent anchoring for adjacent neurites to form seamless neuronal networks that can be grown to any arbitrary shape and size. Apart from clear practical relevance in regenerative medicine, these results using the CNT based templates on Si chips also can pave the road for new types of microelectrode arrays to study cell network electrophysiology.

References

  1. [1]

    Lowery, L. A.; van Vactor, D. The trip of the tip: Understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol.2009, 10, 332–343.

    CAS  Article  Google Scholar 

  2. [2]

    Simitzi, C.; Ranella, A.; Stratakis, E. Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomater.2017, 51, 21–52.

    CAS  Article  Google Scholar 

  3. [3]

    Li, W.; Tang, Q. Y.; Jadhav, A. D.; Narang, A.; Qian, W. X.; Shi, P.; Pang, S. W. Large-scale topographical screen for investigation of physical neural-guidance cues. Sci. Rep.2015, 5, 8644.

    CAS  Article  Google Scholar 

  4. [4]

    Solanki, A.; Chueng, S. T. D.; Yin, P. T.; Kappera, R.; Chhowalla, M.; Lee, K. B. Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv. Mater.2013, 25, 5477–5482.

    CAS  Article  Google Scholar 

  5. [5]

    Hyysalo, A.; Ristola, M.; Joki, T.; Honkanen, M.; Vippola, M.; Narkilahti, S. Aligned poly(ε-caprolactone) nanofibers guide the orientation and migration of human pluripotent stem cell-derived neurons, astrocytes, and oligodendrocyte precursor cells in vitro. Macromol. Biosci.2017, 17, 1600517.

    Article  Google Scholar 

  6. [6]

    Fu, J. P.; Wang, Y. K.; Yang, M. T.; Desai, R. A.; Yu, X.; Liu, Z. J.; Chen, C. S. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods2010, 7, 733–736.

    CAS  Article  Google Scholar 

  7. [7]

    Turney, S. G.; Bridgman, P. C. Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nat. Neurosci.2005, 8, 717–719.

    CAS  Article  Google Scholar 

  8. [8]

    Millaruelo, A. I.; Nieto-Sampedro, M.; Cotman, C. W. Cooperation between nerve growth factor and laminin or fibronectin in promoting sensory neuron survival and neurite outgrowth. Dev. Brain Res.1988, 38, 219–228.

    CAS  Article  Google Scholar 

  9. [9]

    Hammarback, J. A.; Palm, S. L.; Furcht, L. T.; Letourneau, P. C. Guidance of neurite outgrowth by pathways of substratum-adsorbed laminin. J. Neurosci. Res.1985, 13, 213–220.

    CAS  Article  Google Scholar 

  10. [10]

    Gundersen, R. W. Response of sensory neurites and growth cones to patterned substrata of laminin and fibronectin in vitro. Dev. Biol.1987, 121, 423–431.

    CAS  Article  Google Scholar 

  11. [11]

    Kostarelos, K.; Bianco, A.; Prato, M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol.2009, 4, 627–633.

    CAS  Article  Google Scholar 

  12. [12]

    Zhang, B. B.; Yan, W.; Zhu, Y. J.; Yang, W. T.; Le, W. J.; Chen, B. D.; Zhu, R. R.; Cheng, L. M. Nanomaterials in neural-stem-cell-mediated regenerative medicine: Imaging and treatment of neurological diseases. Adv. Mater.2018, 30, 1705694.

    Article  Google Scholar 

  13. [13]

    Besteman, K.; Lee, J. O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett.2003, 3, 727–730.

    CAS  Article  Google Scholar 

  14. [14]

    Li, X. M.; Liu, H. F.; Niu, X. F.; Yu, B.; Fan, Y. B.; Feng, Q. L.; Cui, F. Z.; Watari, F. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials2012, 33, 4818–4827.

    CAS  Article  Google Scholar 

  15. [15]

    Béduer, A.; Seichepine, F.; Flahaut, E.; Loubinoux, I.; Vaysse, L.; Vieu, C. Elucidation of the role of carbon nanotube patterns on the development of cultured neuronal cells. Langmuir2012, 28, 17363–17371.

    Article  Google Scholar 

  16. [16]

    Chao, T. I.; Xiang, S. H.; Lipstate, J. F.; Wang, C. C.; Lu, J. Poly(methacrylic acid)-grafted carbon nanotube scaffolds enhance differentiation of hESCs into neuronal cells. Adv. Mater.2010, 22, 3542–3547.

    CAS  Article  Google Scholar 

  17. [17]

    Fabbro, A.; Villari, A.; Laishram, J.; Scaini, D.; Toma, F. M.; Turco, A.; Prato, M.; Ballerini, L. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS Nano2012, 6, 2041–2055.

    CAS  Article  Google Scholar 

  18. [18]

    Shin, S. R.; Jung, S. M.; Zalabany, M.; Kim, K.; Zorlutuna, P.; Kim, S. B.; Nikkhah, M.; Khabiry, M.; Azize, M.; Kong, J. et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano2013, 7, 2369–2380.

    CAS  Article  Google Scholar 

  19. [19]

    Shin, S. R.; Bae, H.; Cha, J. M.; Mun, J. Y.; Chen, Y. C.; Tekin, H.; Shin, H.; Farshchi, S.; Dokmeci, M. R.; Tang, S. et al. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano2012, 6, 362–372.

    CAS  Article  Google Scholar 

  20. [20]

    Xie, X.; Zhao, W. T.; Lee, H. R.; Liu, C.; Ye, M.; Xie, W. J.; Cui, B. X.; Criddle, C. S.; Cui, Y. Enhancing the nanomaterial bio-interface by addition of mesoscale secondary features: Crinkling of carbon nanotube films to create subcellular ridges. ACS Nano2014, 8, 11958–11965.

    CAS  Article  Google Scholar 

  21. [21]

    Cellot, G.; Cilia, E.; Cipollone, S.; Rancic, V.; Sucapane, A.; Giordani, S.; Gambazzi, L.; Markram, H.; Grandolfo, M.; Scaini, D. et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol.2009, 4, 126–133.

    CAS  Article  Google Scholar 

  22. [22]

    Gheith, M. K.; Pappas, T. C.; Liopo, A. V.; Sinani, V. A.; Shim, B. S.; Motamedi, M.; Wicksted, J. P.; Kotov, N. A. Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes. Adv. Mater.2006, 18, 2975–2979.

    CAS  Article  Google Scholar 

  23. [23]

    Wu, C. H.; Liu, A. M.; Chen, S. P.; Zhang, X. F.; Chen, L.; Zhu, Y. D.; Xiao, Z. W.; Sun, J.; Luo, H. R.; Fan, H. S. Cell-laden electroconductive hydrogel simulating nerve matrix to deliver electrical cues and promote neurogenesis. ACS Appl. Mater. Interfaces2019, 11, 22152–22163.

    CAS  Article  Google Scholar 

  24. [24]

    Barrejón, M.; Rauti, R.; Ballerini, L.; Prato, M. Chemically cross-linked carbon nanotube films engineered to control neuronal signaling. ACS Nano2019, 13, 8879–8889.

    Article  Google Scholar 

  25. [25]

    Zhang, X.; Prasad, S.; Niyogi, S.; Morgan, A.; Ozkan, M.; Ozkan, C. S. Guided neurite growth on patterned carbon nanotubes. Sens. Actuators B Chem.2005, 106, 843–850.

    CAS  Article  Google Scholar 

  26. [26]

    Suzuki, I. K.; Vanderhaeghen, P. Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells. Development2015, 142, 3138–3150.

    CAS  Article  Google Scholar 

  27. [27]

    Avior, Y.; Sagi, I.; Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol.2016, 17, 170–182.

    CAS  Article  Google Scholar 

  28. [28]

    Kasteel, E. E. J.; Westerink, R. H. S. Comparison of the acute inhibitory effects of tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes. Toxicol. Lett.2017, 270, 12–16.

    CAS  Article  Google Scholar 

  29. [29]

    Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grandolfo, M.; Righi, M.; Spalluto, G.; Prato, M.; Ballerini, L. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett.2005, 5, 1107–1110.

    CAS  Article  Google Scholar 

  30. [30]

    Discher, D. E.; Janmey, P.; Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science2005, 310, 1139–1143.

    CAS  Article  Google Scholar 

  31. [31]

    Ali, S.; Wall, I. B.; Mason, C.; Pelling, A. E.; Veraitch, F. S. The effect of Young’s modulus on the neuronal differentiation of mouse embryonic stem cells. Acta Biomater.2015, 25, 253–267.

    Article  Google Scholar 

  32. [32]

    Young, A.; Machacek, D. W.; Dhara, S. K.; MacLeish, P. R.; Benveniste, M.; Dodla, M. C.; Sturkie, C. D.; Stice, S. L. Ion channels and ionotropic receptors in human embryonic stem cell derived neural progenitors. Neuroscience2011, 192, 793–805.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

G. S. L. and L. Y-O. acknowledge the support from the Academy of Finland (Nos. 320090, 317437 and 286990, respectively). J. T. K. and T. J. acknowledge the support from the Finnish Cultural Foundation Pirkanmaa Regional Fund (No. 50151501) and the Central Fund (#00150312), respectively. S. N., T. J. and M. K. acknowledge the support from the Academy of Finland (S. N. and T. J. No. 312414 and M. K. No. 312409) and Business Finland (former Tekes, Human Spare Parts project). This work made use of the electron microscopy and clean-room facilities at the Centre of Microscopy and Nanotechnology, at the University of Oulu. The authors also acknowledge the Tampere Imaging Facility (TIF) and the Tampere CellTech Laboratories for their service.

Funding

Funding: Open access funding provided by University of Oulu including Oulu University Hospital.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriela S. Lorite.

Electronic Supplementary Material

Rights and permissions

Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lorite, G.S., Ylä-Outinen, L., Janssen, L. et al. Carbon nanotube micropillars trigger guided growth of complex human neural stem cells networks. Nano Res. 12, 2894–2899 (2019). https://doi.org/10.1007/s12274-019-2533-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2533-2

Keywords

  • carbon nanotubes
  • multiple cues
  • guided neurite outgrowth
  • human neural stem cells
  • neuronal networks