Advertisement

Nano Research

, Volume 12, Issue 11, pp 2866–2871 | Cite as

PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption

  • Rui Lin
  • Xuelu Ma
  • Weng-Chon Cheong
  • Chao Zhang
  • Wei Zhu
  • Jiajing Pei
  • Kaiyue Zhang
  • Bin Wang
  • Shiyou Liang
  • Yuxi Liu
  • Zhongbin Zhuang
  • Rong Yu
  • Hai XiaoEmail author
  • Jun Li
  • Dingsheng Wang
  • Qing Peng
  • Chen ChenEmail author
  • Yadong Li
Research Article
  • 107 Downloads

Abstract

For electrocatalytic reduction of CO2 to CO, the stabilization of intermediate COOH* and the desorption of CO* are two key steps. Pd can easily stabilize COOH*, whereas the strong CO* binding to Pd surface results in severe poisoning, thus lowering catalytic activity and stability for CO2 reduction. On Ag surface, CO* desorbs readily, while COOH* requires a relatively high formation energy, leading to a high overpotential. In light of the above issues, we successfully designed the PdAg bimetallic catalyst to circumvent the drawbacks of sole Pd and Ag. The PdAg catalyst with Ag-terminated surface not only shows a much lower overpotential (-0.55 V with CO current density of 1 mA/cm2) than Ag (−0.76 V), but also delivers a CO/H2 ratio 18 times as high as that for Pd at the potential of -0.75 V vs. RHE. The issue of CO poisoning is significantly alleviated on Ag-terminated PdAg surface, with the stability well retained after 4 h electrolysis at -0.75 V vs. RHE. Density functional theory (DFT) calculations reveal that the Ag-terminated PdAg surface features a lowered formation energy for COOH* and weakened adsorption for CO*, which both contribute to the enhanced performance for CO2 reduction.

Keywords

CO2 reduction bimetallic low overpotential CO desorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2016YFA0202801 and 2017YFA0700101), the National Natural Science Foundation of China (Nos. 21872076, 21573119, 21590792, 21890383, and 91645203) and Beijing Natural Science Foundation (No. JQ18007). The aberration-corrected TEM studies were conducted at the National Center for Electron Microscopy in Beijing for Information Science and Technology.

Supplementary material

12274_2019_2526_MOESM1_ESM.pdf (4 mb)
PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption

References

  1. [1]
    Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.CrossRefGoogle Scholar
  2. [2]
    Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.CrossRefGoogle Scholar
  3. [3]
    Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature2016, 529, 68–71.CrossRefGoogle Scholar
  4. [4]
    Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García De Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science2018, 360, 783–787.CrossRefGoogle Scholar
  5. [5]
    Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 34, 1986–1989.CrossRefGoogle Scholar
  6. [6]
    Reske, R.; Mistry, M.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.CrossRefGoogle Scholar
  7. [7]
    Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.CrossRefGoogle Scholar
  8. [8]
    Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.CrossRefGoogle Scholar
  9. [9]
    Luc, W.; Collins, C.; Wang, S. W.; Xin, H. L.; He, K.; Kang, Y. J.; Jiao, F. Ag–Sn bimetallic catalyst with a core–shell structure for CO2 reduction. J. Am. Chem. Soc. 2017, 139, 1885–1893.CrossRefGoogle Scholar
  10. [10]
    Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science2019, 364, 1091–1094.CrossRefGoogle Scholar
  11. [11]
    Zhang, B.; Zhang, T. J.; Feng, W. J.; Liu, Y. X.; Wang, H. H.; Su, H.; Lv, L. B.; Li, X. H.; Chen, J. S. Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Res. 2018, 11, 2450–1459.CrossRefGoogle Scholar
  12. [12]
    Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.CrossRefGoogle Scholar
  13. [13]
    Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.CrossRefGoogle Scholar
  14. [14]
    Gao, D. F.; Zhou, H.; Cai, F.; Wang, D. N.; Hu, Y. F.; Jiang, B.; Cai, W. B.; Chen, X. Q.; Si, R.; Yang, F. et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 2017, 10, 2181–2191.CrossRefGoogle Scholar
  15. [15]
    Bai, X. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Song, Y. F.; Ge, R. P.; Wei, W.; Sun, Y. H. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew. Chem., Int. Ed. 2017, 56, 12219–12223.CrossRefGoogle Scholar
  16. [16]
    Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.CrossRefGoogle Scholar
  17. [17]
    Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew. Chem., Int. Ed. 2017, 56, 3594–3598.CrossRefGoogle Scholar
  18. [18]
    Zhu, W. J.; Zhang, L.; Yang, P. P.; Hu, C. L.; Luo, Z. B.; Chang, X. X.; Zhao, Z. J.; Gong, J. L. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angew. Chem., Int. Ed. 2018, 57, 11544–11548.CrossRefGoogle Scholar
  19. [19]
    Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 2018, 140, 2880–2889.CrossRefGoogle Scholar
  20. [20]
    Tao, H. C.; Sun, X. F.; Back, S.; Han, Z. S.; Zhu, Q. G.; Robertson, A. W.; Ma, T.; Fan, Q.; Han, B. X.; Jung, Y. et al. Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO. Chem. Sci. 2018, 9, 483–487.CrossRefGoogle Scholar
  21. [21]
    Sun, K.; Wu, L. N.; Qin, W.; Zhou, J. G.; Hu, Y. F.; Jiang, Z. H.; Sheng, B. Z.; Wang, Z. J. Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of states. J. Mater. Chem. A2016, 4, 12616–12623.CrossRefGoogle Scholar
  22. [22]
    Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.CrossRefGoogle Scholar
  23. [23]
    Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.CrossRefGoogle Scholar
  24. [24]
    Liu, S. B.; Tao, H. B.; Zeng, L.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 2017, 139, 2160–2163.CrossRefGoogle Scholar
  25. [25]
    Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 2015, 137, 13844–13850.CrossRefGoogle Scholar
  26. [26]
    Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017, 7, 4822–4827.CrossRefGoogle Scholar
  27. [27]
    Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 2017, 10, 1180–1185.CrossRefGoogle Scholar
  28. [28]
    Hansen, H. A.; Shi, C.; Lausche, A. C.; Peterson, A. A.; Nørskov, J. K. Bifunctional alloys for the electroreduction of CO2 and CO. Phys. Chem. Chem. Phys. 2016, 18, 9194–9201.CrossRefGoogle Scholar
  29. [29]
    He, J. F.; Johnson, N. J. J.; Huang, A. X.; Berlinguette, C. P. Electrocatalytic alloys for CO2 reduction. ChemSusChem2018, 11, 48–57.CrossRefGoogle Scholar
  30. [30]
    Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K. A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem., Int. Ed. 2015, 54, 2146–2150.CrossRefGoogle Scholar
  31. [31]
    Xing, X. L.; Zhao, Y. F.; Li, H.; Wang, C. T.; Li, Q. X.; Cai, W. B. High performance Ag rich Pd-Ag bimetallic electrocatalyst for ethylene glycol oxidation in alkaline media. J. Electrochem. Soc. 2018, 165, J3259–J3265.CrossRefGoogle Scholar
  32. [32]
    Zhao, Z. L.; Lu, G. Computational screening of near-surface alloys for CO2 electroreduction. ACS Catal.2018, 8, 3885–3894.CrossRefGoogle Scholar
  33. [33]
    Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.CrossRefGoogle Scholar
  34. [34]
    Lu, Z. W.; Wei, S. H.; Zunger, A. Electronic structure of ordered and disordered Cu3Au and Cu3Pd. Phys. Rev. B1992, 45, 10314–10330.CrossRefGoogle Scholar
  35. [35]
    Ruda, M.; Farkas, D.; Abriata, J. Interatomic potentials for carbon interstitials in metals and intermetallics. Scripta Mater. 2002, 46, 349–355.CrossRefGoogle Scholar
  36. [36]
    Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B2004, 108, 17886–17892.CrossRefGoogle Scholar
  37. [37]
    Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 2013, 4, 388–392.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rui Lin
    • 1
  • Xuelu Ma
    • 2
  • Weng-Chon Cheong
    • 1
  • Chao Zhang
    • 1
  • Wei Zhu
    • 3
  • Jiajing Pei
    • 3
  • Kaiyue Zhang
    • 4
  • Bin Wang
    • 5
  • Shiyou Liang
    • 6
  • Yuxi Liu
    • 4
  • Zhongbin Zhuang
    • 3
  • Rong Yu
    • 6
  • Hai Xiao
    • 1
    Email author
  • Jun Li
    • 1
  • Dingsheng Wang
    • 1
  • Qing Peng
    • 1
  • Chen Chen
    • 1
    Email author
  • Yadong Li
    • 1
  1. 1.Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.School of Chemical & Environment EngineeringChina University of Mining & TechnologyBeijingChina
  3. 3.College of Chemical EngineeringBeijing University of Chemical TechnologyBeijingChina
  4. 4.College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingChina
  5. 5.Sinopec Beijing Research Institute of Chemical IndustryBeijingChina
  6. 6.School of Materials Science and Engineering, National Center for Electron Microscopy in BeijingTsinghua UniversityBeijingChina

Personalised recommendations