Nano Research

, Volume 12, Issue 11, pp 2827–2834 | Cite as

Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide

  • Ava Faridi
  • Yunxiang Sun
  • Monika Mortimer
  • Ritchlynn R. Aranha
  • Aparna Nandakumar
  • Yuhuan Li
  • Ibrahim Javed
  • Aleksandr Kakinen
  • Qingqing Fan
  • Anthony W. Purcell
  • Thomas P. DavisEmail author
  • Feng DingEmail author
  • Pouya FaridiEmail author
  • Pu Chun KeEmail author
Research Article


The amyloid aggregation of peptides and proteins is a hallmark of neurological disorders and type 2 diabetes. Human islet amyloid polypeptide (IAPP), co-secreted with insulin by pancreatic β-cells, plays dual roles in both glycemic control and the pathology of type 2 diabetes. While IAPP can activate the NLRP3 inflammasome and modulate cellular autophagy, apoptosis and extracellular matrix metabolism, no data is available concerning intracellular protein expression upon exposure to the polypeptide. More surprisingly, how intracellular protein expression is modulated by nanoparticle inhibitors of protein aggregation remains entirely unknown. In this study, we first examined the changing proteomes of βTC6, a pancreatic β-cell line, upon exposure to monomeric, oligomeric and fibrillar IAPP, and detailed cellular protein expression rescued by graphene quantum dots (GQDs), an IAPP inhibitor. We found that 29 proteins were significantly dysregulated by the IAPP species, while majority of these proteins were nucleotide-binding proteins. Collectively, our liquid chromatography tandem-mass spectrometry, fluorescence quenching, helium ion microscopy, cytotoxicity and discreet molecular dynamics simulations data revealed a remarkable capacity of GQDs in regulating aberrant protein expression through H-bonding and hydrophobic interactions, pointing to nanomedicine as a new frontier against human amyloid diseases.


islet amyloid polypeptide (IAPP) oligomer amyloid protein expression graphene quantum dot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was conceived by PCK, and was by supported by ARC Project No. CE140100036 (Davis), NSF CAREER CBET-1553945 (Ding), NIH MIRA R35GM119691 (Ding), AFTAM Research Collaboration Award (Davis and Ke), the National Natural Science Foundation of China (No. 11904189) (Sun), and the Juvenile Diabetes Research Foundation (Purcell and Faridi). A.W. P. is supported by a Principal Research Fellowship from the Australian NHMRC. TEM imaging was performed at Bio21 Advanced Microscopy Facility, University of Melbourne. HIM imaging was performed at the MCFP platform, University of Melbourne by Dr. Anders Barlow.

Supplementary material

12274_2019_2520_MOESM1_ESM.pdf (78 kb)
Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide


  1. [1]
    Ke, P. C.; Sani, M. A.; Ding, F.; Kakinen, A.; Javed, I.; Separovic, F.; Davis, T. P.; Mezzenga, R. Implications of peptide assemblies in amyloid diseases. Chem. Soc. Rev. 2017, 46, 6492–6531.Google Scholar
  2. [2]
    Zhang, X. X.; St. Clair, J. R.; London, E.; Raleigh, D. P. Islet amyloid polypeptide membrane interactions: Effects of membrane composition. Biochemistry 2017, 56, 376–390.Google Scholar
  3. [3]
    Cao, P.; Abedini, A.; Wang, H.; Tu, L. H.; Zhang, X. X.; Schmidt, A. M.; Raleigh, D. P. Islet amyloid polypeptide toxicity and membrane interactions. Proc. Natl. Acad. Sci. USA 2013, 110, 19279–19284.Google Scholar
  4. [4]
    Knowles, T. P. J.; Vendruscolo, M.; Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 2014, 15, 384–396.Google Scholar
  5. [5]
    Sudhakar, S.; Kalipillai, P.; Santhosh, P. B.; Mani, E. Role of surface charge of inhibitors on amyloid beta fibrillation. J. Phys. Chem. C 2017, 121, 6339–6348.Google Scholar
  6. [6]
    Haataja, L.; Gurlo, T.; Huang, C. J.; Butler, P. C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 2008, 29, 303–316.Google Scholar
  7. [7]
    Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.Google Scholar
  8. [8]
    Fusco, G.; Chen, S. W.; Williamson, P. T. F.; Cascella, R.; Perni, M.; Jarvis, J. A.; Cecchi, C.; Vendruscolo, M.; Chiti, F.; Cremades, N. et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 2017, 358, 1440–1443.Google Scholar
  9. [9]
    Sebollela, A.; Freitas-Correa, L.; Oliveira, F. F.; Paula-Lima, A. C.; Saraiva, L. M.; Martins, S. M.; Mota, L. D.; Torres, C.; Alves-Leon, S.; de Souza, J. M. et al. Amyloid-β oligomers induce differential gene expression in adult human brain slices. J. Biol. Chem. 2012, 287, 7436–7445.Google Scholar
  10. [10]
    Kong, L. N.; Zuo, P. P.; Mu, L.; Liu, Y. Y.; Yang, N. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease. Acta Pharmacol. Sin. 2005, 26, 666–672.Google Scholar
  11. [11]
    Kakinen, A.; Adamcik, J.; Wang, B.; Ge, X. W.; Mezzenga, R.; Davis, T. P.; Ding, F.; Ke, P. C. Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules. Nano Res. 2018, 11, 3636–3647.Google Scholar
  12. [12]
    Nedumpully-Govindan, P.; Kakinen, A.; Pilkington, E. H.; Davis, T. P.; Ke, P. C.; Ding, F. Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci. Rep. 2016, 6, 19463.Google Scholar
  13. [13]
    Gurzov, E. N.; Wang, B.; Pilkington, E. H.; Chen, P. Y.; Kakinen, A.; Stanley, W. J.; Litwak, S. A.; Hanssen, E. G.; Davis, T. P.; Ding, F. et al. Inhibition of hIAPP amyloid aggregation and pancreatic β-cell toxicity by OH-terminated PAMAM dendrimer. Small 2016, 12, 1615–1626.Google Scholar
  14. [14]
    Pilkington, E. H.; Lai, M.; Ge, X. W.; Stanley, W. J.; Wang, B.; Wang, M. Y.; Kakinen, A.; Sani, M. A.; Whittaker, M. R.; Gurzov, E. N. et al. Star polymers reduce islet amyloid polypeptide toxicity via accelerated amyloid aggregation. Biomacromolecules 2017, 18, 4249–4260.Google Scholar
  15. [15]
    Javed, I.; Yu, T. Y.; Peng, G. T.; Sanchez-Ferrer, A.; Faridi, A.; Kakinen, A.; Zhao, M.; Mezzenga, R.; Davis, T. P.; Lin, S. J. et al. In vivo mitigation of amyloidogenesis through functional-pathogenic double-protein coronae. Nano Lett. 2018, 18, 5797–5804.Google Scholar
  16. [16]
    Wang, M. Y.; Sun, Y. X.; Cao, X. Y.; Peng, G. T.; Javed, I.; Kakinen, A.; Davis, T. P.; Lin, S. J.; Liu, J. Q.; Ding, F. et al. Graphene quantum dots against human IAPP aggregation and toxicity in vivo. Nanoscale 2018, 10, 19995–20006.Google Scholar
  17. [17]
    Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013, 7, 6858–6867.Google Scholar
  18. [18]
    Kim, D.; Yoo, J. M.; Hwang, H.; Lee, J.; Lee, S. H.; Yun, S. P.; Park, M. J.; Lee, M. J.; Choi, S.; Kwon, S. H. et al. Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat. Nanotechnol. 2018, 13, 812–818.Google Scholar
  19. [19]
    Wang, M. Y.; Kakinen, A.; Pilkington, E. H.; Davis, T. P.; Ke, P. C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater. Sci. 2017, 5, 485–493.Google Scholar
  20. [20]
    Portelius, E.; Zetterberg, H.; Gobom, J.; Andreasson, U.; Blennow, K. Targeted proteomics in Alzheimer’s disease: Focus on amyloid-β. Expert Rev. Proteomics 2008, 5, 225–237.Google Scholar
  21. [21]
    Savas, J. N.; Wang, Y. Z.; DeNardo, L. A.; Martinez-Bartolome, S.; McClatchy, D. B.; Hark, T. J.; Shanks, N. F.; Cozzolino, K. A.; Lavallee-Adam, M.; Smukowski, S. N. et al. Amyloid accumulation drives proteome-wide alterations in mouse models of Alzheimer’s disease-like pathology. Cell Rep. 2017, 21, 2614–2627.Google Scholar
  22. [22]
    Sun, Y. X.; Kakinen, A.; Xing, Y. T.; Pilkington, E. H.; Davis, T. P.; Ke, P. C.; Ding, F. Nucleation of β-rich oligomers and β-barrels in the early aggregation of human islet amyloid polypeptide. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 434–444.Google Scholar
  23. [23]
    Usov, I.; Mezzenga, R. FiberApp: An open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macromolecules 2015, 48, 1269–1280.Google Scholar
  24. [24]
    Lin, C. Y.; Gurlo, T.; Kayed, R.; Butler, A. E.; Haataja, L.; Glabe, C. G.; Butler, P. C. Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced β-cell apoptosis in h-IAPP transgenic mice. Diabetes 2007, 56, 1324–1332.Google Scholar
  25. [25]
    Faridi, A.; Sun, Y. X.; Okazaki, Y.; Peng, G. T.; Gao, J.; Kakinen, A.; Faridi, P.; Zhao, M.; Javed, I.; Purcell, A. W. et al. Mitigating human IAPP amyloidogenesis in vivo with chiral silica nanoribbons. Small 2018, 14, 1802825.Google Scholar
  26. [26]
    Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003, 300, 486–489.Google Scholar
  27. [27]
    Lopes, D. H. J.; Colin, C.; Degaki, T. L.; de Sousa, A. C. V.; Vieira, M. N. N.; Sebollela, A.; Martinez, A. M. B.; Bloch, C. Jr.; Ferreira, S. T.; Sogayar, M. C. Amyloidogenicity and cytotoxicity of recombinant mature human islet amyloid polypeptide (rhIAPP). J. Biol. Chem. 2004, 279, 42803–42810.Google Scholar
  28. [28]
    Krotee, P.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Reyes, F. E.; Shi, D.; Hattne, J.; Nannenga, B. L.; Oskarsson, M. E.; Philipp, S. et al. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity. eLife 2017, 6, e19273.Google Scholar
  29. [29]
    Joshi-Tope, G.; Gillespie, M.; Vastrik, I.; D’Eustachio, P.; Schmidt, E.; de Bono, B.; Jassal, B.; Gopinath, G. R.; Wu, G. R.; Matthews, L. et al. Reactome: A knowledgebase of biological pathways. Nucleic Acids Res. 2005, 33, D428–D432.Google Scholar
  30. [30]
    Cremades, N.; Cohen, S. I. A.; Deas, E.; Abramov, A. Y.; Chen, A. Y.; Orte, A.; Sandal, M.; Clarke, R. W.; Dunne, P.; Aprile, F. A. et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 2012, 149, 1048–1059.Google Scholar
  31. [31]
    Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K. P. et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452.Google Scholar
  32. [32]
    Szklarczyk, D.; Morris, J. H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N. T.; Roth, A.; Bork, P. et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368.Google Scholar
  33. [33]
    Mi, H. Y.; Huang, X. S.; Muruganujan, A.; Tang, H. M.; Mills, C.; Kang, D.; Thomas, P. D. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017, 45, D183–D189.Google Scholar
  34. [34]
    Zhou, X.; Liao, W. J.; Liao, J. M.; Liao, P.; Lu, H. Ribosomal proteins: Functions beyond the ribosome. J. Mol. Cell Biol. 2015, 7, 92–104.Google Scholar
  35. [35]
    Deng, L. T.; Pushpitha, K.; Joseph, C.; Gupta, V.; Rajput, R.; Chitranshi, N.; Dheer, Y.; Amirkhani, A.; Kamath, K.; Pascovici, D. et al. Amyloid β induces early changes in the ribosomal machinery, cytoskeletal organization and oxidative phosphorylation in retinal photoreceptor cells. Front. Mol. Neurosci. 2019, 12, 24.Google Scholar
  36. [36]
    Anantharam, V.; Lehrmann, E.; Kanthasamy, A.; Yang, Y. J.; Banerjee, P.; Becker, K. G.; Freed, W. J.; Kanthasamy, A. G. Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: Relevance to oxidative damage in Parkinson’s disease. Neurochem. Int. 2007, 50, 834–847.Google Scholar
  37. [37]
    Pavel, M.; Imarisio, S.; Menzies, F. M.; Jimenez-Sanchez, M.; Siddiqi, F. H.; Wu, X. T.; Renna, M.; O’Kane, C. J.; Crowther, D. C.; Rubinsztein, D. C. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat. Commun. 2016, 7, 13821.Google Scholar
  38. [38]
    Garcia-Esparcia, P.; Sideris-Lampretsas, G.; Hernandez-Ortega, K.; Grau-Rivera, O.; Sklaviadis, T.; Gelpi, E.; Ferrer, I. Altered mechanisms of protein synthesis in frontal cortex in Alzheimer disease and a mouse model. Am. J. Neurodegener. Dis. 2017, 6, 15–25.Google Scholar
  39. [39]
    Nutter, C. A.; Kuyumcu-Martinez, M. N. Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications. Wiley Interdiscip. Rev. RNA 2018, 9, e1459.Google Scholar
  40. [40]
    Juan-Mateu, J.; Villate, O.; Eizirik, D. L. MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: The new frontier in diabetes research. Eur. J. Endocrinol. 2016, 174, R225–R238.Google Scholar
  41. [41]
    Love, J. E.; Hayden, E. J.; Rohn, T. T. Alternative splicing in Alzheimer’s disease. J. Parkinsons Dis. Alzheimers Dis. 2015, 2, 6.Google Scholar
  42. [42]
    Lashuel, H. A.; Aljabari, B.; Sigurdsson, E. M.; Metz, C. N.; Leng, L.; Callaway, D. J. E.; Bucala, R. Amyloid fibril formation by macrophage migration inhibitory factor. Biochem. Biophys. Res. Commun. 2005, 338, 973–980.Google Scholar
  43. [43]
    Gevorkian, G.; Gonzalez-Noriega, A.; Acero, G.; Ordoñez, J.; Michalak, C.; Munguia, M. E.; Govezensky, T.; Cribbs, D. H.; Manoutcharian, K. Amyloid-β peptide binds to microtubule-associated protein 1B (MAP1B). Neurochem. Int. 2008, 52, 1030–1036.Google Scholar
  44. [44]
    Pianu, B.; Lefort, R.; Thuiliere, L.; Tabourier, E.; Bartolini, F. The Aβ1–42 peptide regulates microtubule stability independently of tau. J. Cell Sci. 2014, 127, 1117–1127.Google Scholar
  45. [45]
    Luo, J. H.; Wärmländer, S. K. T. S.; Gräslund, A.; Abrahams, J. P. Cross-interactions between the Alzheimer disease amyloid-β peptide and other amyloid proteins: A further aspect of the Amyloid cascade hypothesis. J. Biol. Chem. 2016, 291, 16485–16493.Google Scholar
  46. [46]
    Lim, Y. A.; Rhein, V.; Baysang, G.; Meier, F.; Poljak, A.; Raftery, M. J.; Guilhaus, M.; Ittner, L. M.; Eckert, A.; Götz, J. Aβ and human amylin share a common toxicity pathway via mitochondrial dysfunction. Proteomics 2010, 10, 1621–1633.Google Scholar
  47. [47]
    Götz, J.; Lim, Y. A.; Eckert, A. Lessons from two prevalent amyloidoseswhat amylin and Aβ have in common. Front. Aging Neurosci. 2013, 5, 38.Google Scholar
  48. [48]
    Liu, Y. B.; Xu, L. P.; Dai, W. H.; Dong, H. F.; Wen, Y. Q.; Zhang, X. J. Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale 2015, 7, 19060–19065.Google Scholar
  49. [49]
    Wu, C. Y.; Wang, C.; Han, T.; Zhou, X. J.; Guo, S. W.; Zhang, J. Y. Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv. Healthc. Mater. 2013, 2, 1613–1619.Google Scholar
  50. [50]
    Chong, Y.; Ma, Y. F.; Shen, H.; Tu, X. L.; Zhou, X.; Xu, J. Y.; Dai, J. W.; Fan, S. J.; Zhang, Z. J. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 2014, 35, 5041–5048.Google Scholar
  51. [51]
    Matsusaki, M.; Kanemura, S.; Kinoshita, M.; Lee, Y. H.; Inaba, K.; Okumura, M. The protein disulfide isomerase family: From proteostasis to pathogenesis. Biochim. Biophys. Acta Gen. Subj. in press, DOI:

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ava Faridi
    • 1
  • Yunxiang Sun
    • 2
    • 3
  • Monika Mortimer
    • 4
  • Ritchlynn R. Aranha
    • 5
  • Aparna Nandakumar
    • 1
  • Yuhuan Li
    • 1
  • Ibrahim Javed
    • 1
  • Aleksandr Kakinen
    • 1
  • Qingqing Fan
    • 1
  • Anthony W. Purcell
    • 5
  • Thomas P. Davis
    • 1
    • 6
    Email author
  • Feng Ding
    • 3
    Email author
  • Pouya Faridi
    • 5
    Email author
  • Pu Chun Ke
    • 1
    Email author
  1. 1.ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  2. 2.Department of PhysicsNingbo UniversityNingboChina
  3. 3.Department of Physics and AstronomyClemson UniversityClemsonUSA
  4. 4.Institute of Environmental and Health Sciences, College of Quality and Safety EngineeringChina Jiliang UniversityHangzhouChina
  5. 5.Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
  6. 6.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia

Personalised recommendations