Nano Research

, Volume 12, Issue 11, pp 2796–2801 | Cite as

External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors

  • Jinwen Wang
  • Wei Deng
  • Wei Wang
  • Ruofei Jia
  • Xiuzhen Xu
  • Yanling Xiao
  • Xiujuan Zhang
  • Jiansheng JieEmail author
  • Xiaohong ZhangEmail author
Research Article


Growth of two-dimensional (2D) organic single crystals (2DOSCs) on water surface has attracted increasing attention, because it can serve as a molecularly flat and defect-free substrate. However, large-area growth of 2DOSCs with controllable crystal orientation on water surface remains a key challenge. Herein, we develop a simple method, i.e. external-force-driven solution epitaxy (EFDSE), for the large-area growth of 2DOSCs at air/water interface. Using 2,7-didecylbenzothienobenzothiophene (C10-BTBT) as an example, high-quality 2D C10-BTBT crystals on centimeter scale are generated by directionally controlling the spreading of organic solution on water surface with external force. Benefiting from the controllable crystal orientation with optimal charge transport, the corresponding 2DOSC-based organic field-effect transistors (OFETs) exhibit a high carrier mobility of 13.5 cm2·V-1·s-1 (effective mobility ≈ 5.4 cm2·V-1·s-1 according to a reliability factor of 40%), which represents the best result achieved for water-surface-assembled 2DOSC-based OFETs. Furthermore, by transferring the C10-BTBT 2DOSCs to flexible substrates, devices with excellent bending stability are achieved. It is anticipated that our method will provide new insight into the controllable growth of large-area 2DOSCs for high-performance organic devices.


external-force-driven solution epitaxy two-dimensional organic single crystals high mobility organic field-effect transistors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 51672180, 51622306, and 21673151), Natural Science Foundation of Jiangsu Province of China (No. BK20180845), Qing Lan Project, 111 project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors thank the Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University and Beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time.

Supplementary material

12274_2019_2515_MOESM1_ESM.mp4 (10.3 mb)
Supplementary material, approximately 228 KB.
12274_2019_2515_MOESM2_ESM.pdf (3.2 mb)
External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors


  1. [1]
    Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun.2013, 4, 2642.CrossRefGoogle Scholar
  2. [2]
    Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on twodimensional materials. Nat. Nanotech.2014, 9, 768–779.CrossRefGoogle Scholar
  3. [3]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science2008, 321, 385–388.CrossRefGoogle Scholar
  4. [4]
    Deng, W.; Zhang, X. J.; Wang, L.; Wang, J. C.; Shang, Q. X.; Zhang, X. H.; Huang, L. M.; Jie, J. S. Wafer-scale precise patterning of organic singlecrystal nanowire arrays via a photolithography-assisted spin-coating method. Adv. Mater.2015, 27, 7305–7312.CrossRefGoogle Scholar
  5. [5]
    Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Progr. Mater. Sci.2015, 73, 44–126.CrossRefGoogle Scholar
  6. [6]
    Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon.2014, 8, 899–907.CrossRefGoogle Scholar
  7. [7]
    Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech.2014, 9, 780–793.CrossRefGoogle Scholar
  8. [8]
    Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science2016, 354, 99–102.CrossRefGoogle Scholar
  9. [9]
    Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater.2017, 16, 170–181.CrossRefGoogle Scholar
  10. [10]
    Park, S. K.; Kim, J. H.; Park, S. Y. Organic 2D optoelectronic crystals: Charge transport, emerging functions, and their design perspective. Adv. Mater.2018, 30, 1704759.CrossRefGoogle Scholar
  11. [11]
    Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater.2011, 23, 2059–2063.CrossRefGoogle Scholar
  12. [12]
    Wang, Q. Q.; Yang, F. X.; Zhang, Y.; Chen, M. X.; Zhang, X. T.; Lei, S. B.; Li, R. J.; Hu, W. P. Space-confined strategy toward large-area two-dimensional single crystals of molecular materials. J. Am. Chem. Soc.2018, 140, 5339–5342.CrossRefGoogle Scholar
  13. [13]
    Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater.2016, 26, 3191–3198.CrossRefGoogle Scholar
  14. [14]
    Kim, J. H.; Park, S. K.; Kim, J. H.; Whang, D. R.; Yoon, W. S.; Park, S. Y. Self-assembled organic single crystalline nanosheet for solution processed high-performance n-channel field-effect transistors. Adv. Mater.2016, 28, 6011–6015.CrossRefGoogle Scholar
  15. [15]
    He, D. W.; Zhang, Y. H.; Wu, Q. S.; Xu, R.; Nan, H. Y.; Liu, J. F.; Yao, J. J.; Wang, Z. L.; Yuan, S. J.; Li, Y. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun.2014, 5, 5162.CrossRefGoogle Scholar
  16. [16]
    Xu, C. H.; He, P.; Liu, J.; Cui, A. J.; Dong, H. L.; Zhen, Y. G.; Chen, W.; Hu, W. P. A general method for growing two-dimensional crystals of organic semiconductors by “solution epitaxy”. Angew. Chem., Int. Ed.2016, 55, 9519–9523.CrossRefGoogle Scholar
  17. [17]
    He, D. W.; Qiao, J. S.; Zhang, L. L.; Wang, J. Y.; Lan, T.; Qian, J.; Li, Y.; Shi, Y.; Chai, Y.; Lan, W. et al. Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride. Sci. Adv.2017, 3, e1701186.CrossRefGoogle Scholar
  18. [18]
    Yamamura, A.; Watanabe, S.; Uno, M.; Mitani, M.; Mitsui, C.; Tsurumi, J.; Isahaya, N.; Kanaoka, Y.; Okamoto, T.; Takeya, J. Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. Sci. Adv.2018, 4, eaao5758.CrossRefGoogle Scholar
  19. [19]
    Arai, S.; Inoue, S.; Hamai, T.; Kumai, R.; Hasegawa, T. Semiconductive single molecular bilayers realized using geometrical frustration. Adv. Mater.2018, 30, 1707256.CrossRefGoogle Scholar
  20. [20]
    Zhang, Y. H.; Qiao, J. S.; Gao, S.; Hu, F. R.; He, D. W.; Wu, B.; Yang, Z. Y.; Xu, B. C.; Li, Y.; Shi, Y. et al. Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit. Phys. Rev. Lett.2016, 116, 016602.CrossRefGoogle Scholar
  21. [21]
    Shi, Y. J.; Jiang, L.; Liu, J.; Tu, Z. Y.; Hu, Y. Y.; Wu, Q. H.; Yi, Y. P.; Gann, E.; McNeill, C. R.; Li, H. X. et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun.2018, 9, 2933.CrossRefGoogle Scholar
  22. [22]
    Liu, D. H.; Chen, X. S.; Hu, Y. B.; Sun, T.; Song, Z. B.; Zheng, Y. J.; Cao, Y. B.; Cai, Z.; Cao, M.; Peng, L. et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat. Commun.2018, 9, 193.CrossRefGoogle Scholar
  23. [23]
    Schweicher, G.; Lemaur, V.; Niebel, C.; Ruzié, C.; Diao, Y.; Goto, O.; Lee, W. Y.; Kim, Y.; Arlin, J. B.; Karpinska, J. et al. Bulky end-capped [1]benzothieno[3,2-b]benzothiophenes: Reaching high-mobility organic semiconductors by fine tuning of the crystalline solid-state order. Adv. Mater.2015, 27, 3066–3072.CrossRefGoogle Scholar
  24. [24]
    Izawa, T.; Miyazaki, E.; Takimiya, K. Molecular ordering of highperformance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics. Adv. Mater.2008, 20, 3388–3392.CrossRefGoogle Scholar
  25. [25]
    Xu, Y.; Sun, H. B.; Liu, A.; Zhu, H. H.; Li, B. H.; Minari, T.; Balestra, F.; Ghibaudo, G.; Noh, Y. Y. Essential effects on the mobility extraction reliability for organic transistors. Adv. Funct. Mater.2018, 28, 1803907.CrossRefGoogle Scholar
  26. [26]
    Choi, H. H.; Cho, K.; Frisbie, C. D.; Sirringhaus, H.; Podzorov V. Critical assessment of charge mobility extraction in FETs. Nat. Mater.2017, 17, 2–7.CrossRefGoogle Scholar
  27. [27]
    Deng, W.; Zhang, X. J.; Wang, J. C.; Shang, Q. X.; Gong, C.; Zhang, X. H.; Zhang, Q.; Jie, J. S. Very facile fabrication of aligned organic nanowires based high-performance top-gate transistors on flexible, transparent substrate. Org. Electron.2014, 15, 1317–1323.CrossRefGoogle Scholar
  28. [28]
    Deng, W.; Zhang, X. J.; Dong, H. L.; Jie, J. S.; Xu, X. Z.; Liu, J.; He, L.; Xu, L.; Hu, W. P.; Zhang, X. H. Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Mater. Today2019, 24, 17–25.CrossRefGoogle Scholar
  29. [29]
    Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. N. Patterning organic single-crystal transistor arrays. Nature2006, 444, 913–917.CrossRefGoogle Scholar
  30. [30]
    Deng, W.; Zhang, X. J.; Pan, H. H.; Shang, Q. X.; Wang, J. C.; Zhang, X. H.; Zhang, X. W.; Jie, J. S. A high-yield two-step transfer printing method for large-scale fabrication of organic single-crystal devices on arbitrary substrates. Sci. Rep.2014, 4, 5358.CrossRefGoogle Scholar
  31. [31]
    Minari, T.; Kano, M.; Miyadera, T.; Wang, S. D.; Aoyagi, Y.; Tsukagoshi, K. Surface selective deposition of molecular semiconductors for solutionbased integration of organic field-effect transistors. Appl. Phys. Lett.2009, 94, 093307.CrossRefGoogle Scholar
  32. [32]
    Kan, X. N.; Xiao, C. Y.; Li, X. M.; Su, B.; Wu, Y. C.; Jiang, W.; Wang, Z. H.; Jiang, L. A dewetting-induced assembly strategy for precisely patterning organic single crystals in OFETs. ACS Appl. Mater. Interface2016, 8, 18978–18984.CrossRefGoogle Scholar
  33. [33]
    Park, K. S.; Cho, B.; Baek, J.; Hwang, J. K.; Lee, H.; Sung, M. Single-crystal organic nanowire electronics by direct printing from molecular solutions. Adv. Funct. Mater.2013, 23, 4776–4784.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jinwen Wang
    • 1
  • Wei Deng
    • 1
  • Wei Wang
    • 1
  • Ruofei Jia
    • 1
  • Xiuzhen Xu
    • 1
  • Yanling Xiao
    • 1
  • Xiujuan Zhang
    • 1
  • Jiansheng Jie
    • 1
    Email author
  • Xiaohong Zhang
    • 1
    Email author
  1. 1.Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouChina

Personalised recommendations