Nano Research

, Volume 12, Issue 11, pp 2781–2787 | Cite as

Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2

  • Guangzhuang Sun
  • Bo Li
  • Shifa Wang
  • Zhengwei Zhang
  • Jia Li
  • Xidong DuanEmail author
  • Xiangfeng Duan
Research Article


Heterostructures combined by different individual two-dimensional (2D) materials are essential building blocks to realize unique electronic, optoelectronic properties and multifunctional applications. To date, the direct growth of 2D/2D atomic van der Waals heterostructures (vdWHs) have been extensively investigated. However, the heterostructures from 2D inorganic molecular crystals and atomic crystals have been rarely reported. Here we report two-step direct epitaxial growth of the inorganic molecular-atomic Sb2O3/WS2 vdWHs. The thickness of Sb2O3 nanosheets on WS2 nanosheets can be tuned by variable growth temperatures. Oriented growth behavior of Sb2O3 on WS2 was determined through statistics. Optical images, Raman spectra, Raman mappings and selected-area electron diffraction (SAED), etc., reveal that Sb2O3/WS2 heterostructures are vertically stacked with high crystal quality. Electrical transport measurements demonstrate that the heterotransistors based on the heterostructures possess high current on/off ratio of 5 × 105, obvious gate-tunable and current rectification output characteristics. Optoelectronic characterizations show that the heterostructures have a clear photoresponse with high responsivity of 16.4 A/W. The growth of vdWHs from 2D inorganic molecular-atomic crystals may open up new opportunities in 2D functional electronics and optoelectronics.


vapor phase epitaxy selective growth Sb2O3/WS2 heterostructures band alignment rectification effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the financial support from the Fundamental Research Funds of the Central Universities (No. 531118010112), the Double First-Class University Initiative of Hunan University (No. 531109100004). We also acknowledge the support from the National Natural Science Foundation of China (No. 751214296), Hunan Key Laboratory of Two-Dimensional Materials (No. 801200005), and Strategic Priority Research Program of Chinese Academy of Science (No. XDB30000000).

Supplementary material

12274_2019_2513_MOESM1_ESM.pdf (2.2 mb)
Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.Google Scholar
  2. [2]
    Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater.2012, 24, 2320–2325.Google Scholar
  3. [3]
    Wu, K. D.; Chen, B.; Yang, S. J.; Wang, G.; Kong, W.; Cai, H.; Aoki, T.; Soignard, E.; Marie, X.; Yano, A. et al. Domain architectures and grain boundaries in chemical vapor deposited highly anisotropic ReS2 monolayer films. Nano Lett.2016, 76, 5888–5894.Google Scholar
  4. [4]
    Liu, J. C.; Liu, X.; Chen, Z. J.; Miao, L. L.; Liu, X. Q.; Li, B.; Tang, L. M.; Chen, K. Q.; Liu, Y.; Li, J. B. et al. Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. Nano Res.2019, 72, 463–468.Google Scholar
  5. [5]
    Zhong, M. Z.; Xia, Q. L.; Pan, L. F.; Liu, Y. Q.; Chen, Y. B.; Deng, H. X.; Li, J. B.; Wei, Z. M. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black arsenic. Adv. Funct. Mater.2018, 28, 1802581.Google Scholar
  6. [6]
    Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc.2017, 139, 14976–14982.Google Scholar
  7. [7]
    Ismach, A.; Chou, H.; Mende, P.; Dolocan, A.; Addou, R.; Aloni, S.; Wallace, R.; Feenstra, R.; Ruoff, R. S.; Colombo, L. Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Mater.2017, 4, 025117.Google Scholar
  8. [8]
    Zhao, B.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z. W.; Wu, R. X.; Ma, H. F.; Sun, G. Z. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc.2018, 140, 14217–14223.Google Scholar
  9. [9]
    Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater.2014, 2, 131–136.Google Scholar
  10. [10]
    Zhang, Z. P.; Niu, J. J.; Yang, P. F.; Gong, Y.; Ji, Q. Q.; Shi, J. P.; Fang, Q. Y.; Jiang, S. L.; Li, H.; Zhou, X. B. et al. Van der waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater.2017, 29, 1702359.Google Scholar
  11. [11]
    Song, X. J.; Gao, J. F.; Nie, Y. F.; Gao, T.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Chen, Y. B.; Jin, C. H.; Bachmatiuk, A. et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res.2015, 8, 3164–3176.Google Scholar
  12. [12]
    Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ-dielectrics. Adv. Mater.2015, 27, 5230–5234.Google Scholar
  13. [13]
    Park, W.; Kim, Y.; Jung, U.; Yang, J. H.; Cho, C.; Kim, Y. J.; Hasan, S. M. N.; Kim, H. G.; Lee, H. B. R.; Lee, B. H. Complementary unipolar WS2 field-effect transistors using fermi-level depinning layers. Adv. Electron. Mater.2016, 2, 1500278.Google Scholar
  14. [14]
    Tan, H. J.; Fan, Y.; Zhou, Y. Q.; Chen, Q.; Xu, W. S.; Warner, J. H. Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano2016, 10, 7866–7873.Google Scholar
  15. [15]
    Wang, F.; Wang, Z. X.; Yin, L.; Cheng, R. Q.; Wang, J. J.; Wen, Y.; Shifa, T. A.; Wang, F. M.; Zhang, Y.; Zhan, X. Y. et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev.2018, 47, 6296–6341.Google Scholar
  16. [16]
    Wang, Y.; Jiang, L. X.; Liu, Y. K.; Tang, D.; Liu, F. Y.; Lai, Y. Q. Facile synthesis and photoelectrochemical characterization of Sb2O3 nanoprism arrays. J. Alloys Compd.2017, 727, 469–474.Google Scholar
  17. [17]
    Allen, J. P.; Carey, J. J.; Walsh, A.; Scanlon, D. O.; Watson, G. W. Electronic structures of antimony oxides. J. Phys. Chem. C2013, 117, 14759–14769.Google Scholar
  18. [18]
    Pereira, A. L. J.; Gracia, L.; Santamaría-Pérez, D.; Vilaplana, R.; Manjón, F. J.; Errandonea, D.; Nalin, M.; Beltrán, A. Structural and vibrational study of cubic Sb2O3 under high pressure. Phys. Rev. B2012, 85, 174108.Google Scholar
  19. [19]
    Oyedele, A. D.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K. The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures. Carbon2018, 131, 246–257.Google Scholar
  20. [20]
    Shim, J.; Kang, D. H.; Kim, Y.; Kum, H.; Kong, W.; Bae, S. H.; Almansouri, I.; Lee, K.; Park, J. H.; Kim, J. Recent progress in van der Waals (vdW) heterojunction-based electronic and optoelectronic devices. Carbon2018, 133, 78–89.Google Scholar
  21. [21]
    Li, M. Y.; Chen, C. H.; Shi, Y. M.; Li, L. J. Heterostructures based on two-dimensional layered materials and their potential applications. Materialstoday2016, 19, 322–335.Google Scholar
  22. [22]
    Zhou, X.; Hu, X. Z.; Yu, J.; Liu, S. Y.; Shu, Z. W.; Zhang, Q.; Li, H. Q.; Ma, Y.; Xu, H.; Zhai, T. Y. 2D Layered material-based van der waals heterostructures for optoelectronics. Adv. Funct. Mater.2018, 28, 1706587.Google Scholar
  23. [23]
    Cheng, J. B.; Wang, C. L.; Zou, X. M.; Liao, L. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater.2019, 7, 1800441.Google Scholar
  24. [24]
    Sun, G. Z.; Li, B.; Li, J.; Zhang, Z. W.; Ma, H. F.; Chen, P.; Zhao, B.; Wu, R. X.; Dang, W. Q.; Yang, X. D. et al. Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. Nano Res.2019, 12, 1139–1145.Google Scholar
  25. [25]
    Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron.2018, 1, 356–361.Google Scholar
  26. [26]
    Wu, E. X.; Xie, Y.; Liu, Q. Z.; Hu, X. D.; Liu, J.; Zhang, D. H.; Zhou, C. W. Photoinduced doping to enable tunable and high-performance anti-ambipolar MoTe2/MoS2 heterotransistors. ACS Nano2019, 13, 5430–5438.Google Scholar
  27. [27]
    Wu, Q. K.; Jeong, T.; Park, S.; Sun, J.; Kang, H.; Yoon, T.; Song, Y. J. Two-dimensional semiconducting and single-crystalline antimony trioxide directly-grown on monolayer graphene. Chem. Commun.2019, 55, 2473–2476.Google Scholar
  28. [28]
    Liu, X.; Sun, G. Z.; Chen, P.; Liu, J. C.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X.; Dang, W. Q. et al. High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Res.2019, 12, 339–344.Google Scholar
  29. [29]
    Wu, R. X.; Tao, Q. Y.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Zhao, B.; Zhang, Z. W.; Ma, H. F.; Sun, G. Z. et al. Van der waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater.2019, 29, 1806611.Google Scholar
  30. [30]
    Li, B.; Huang, L.; Zhong, M. Z.; Li, Y.; Wang, Y.; Li, J. B.; Wei, Z. M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater.2016, 2, 1600298.Google Scholar
  31. [31]
    Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rummeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano2016, 10, 2063–2070.Google Scholar
  32. [32]
    Cui, F. F.; Wang, C.; Li, X. B.; Wang, G.; Liu, K. Q.; Yang, Z.; Feng, Q. L.; Liang, X.; Zhang, Z. Y.; Liu, S. Z. et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater.2016, 28, 5019–5024.Google Scholar
  33. [33]
    Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Crystal Growth1999, 201–202, 236–241.Google Scholar
  34. [34]
    Liu, X. L.; Balla, I.; Bergeron, H.; Campbell, G. P.; Bedzyk, M. J.; Hersam, M. C. Rotationally commensurate growth of MoS2 on epitaxial graphene. ACS Nano2016, 10, 1067–1075.Google Scholar
  35. [35]
    Yang, S. X.; Kang, J.; Yue, Q.; Yao, K. Vapor phase growth and imaging stacking order of bilayer molybdenum disulfide. J. Phys. Chem. C2014, 118, 9203–9208.Google Scholar
  36. [36]
    Burton, W. K.; Cabrera, N. Crystal growth and surface structure. Part I. Discuss. Faraday Soc.1949, 5, 33–39.Google Scholar
  37. [37]
    Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett.2015, 15, 709–713.Google Scholar
  38. [38]
    Gong, Y. J.; Lin, Z.; Ye, G. L.; Shi, G.; Feng, S. M.; Lei, Y.; Elías, A. L.; Perea-Lopez, N.; Vajtai, R.; Terrones, H. et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano2015, 9, 11658–11666.Google Scholar
  39. [39]
    Rao, R.; Islam, A. E.; Singh, S.; Berry, R.; Kawakami, R. K.; Maruyama, B.; Katoch, J. Spectroscopic evaluation of charge-transfer doping and strain in graphene/MoS2 heterostructures. Phys. Rev. B2019, 99, 195401.Google Scholar
  40. [40]
    Shi, B.; Zhou, D. M.; Fang, S. X.; Djebbi, K.; Feng, S. L.; Zhao, H. Q.; Tlili, C.; Wang, D. Q. Facile and controllable synthesis of large-area monolayer WS2 flakes based on WO3 precursor drop-casted substrates by chemical vapor deposition. Nanomaterials2019, 9, 578.Google Scholar
  41. [41]
    Huo, N. J.; Kang, J.; Wei, Z. M.; Li, S. S.; Li, J. B.; Wei, S. H. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater.2014, 24, 7025–7031.Google Scholar
  42. [42]
    Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater.2014, 13, 1135–1142.Google Scholar
  43. [43]
    Xue, Y. Z.; Zhang, Y. P.; Liu, Y.; Liu, H. T.; Song, J. C.; Sophia, J.; Liu, J. Y.; Xu, Z. Q.; Xu, Q. Y.; Wang, Z. Y. et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano2016, 10, 573–580.Google Scholar
  44. [44]
    Yang, P. F.; Zhang, Z. P.; Sun, M. X.; Lin, F.; Cheng, T.; Shi, J. P.; Xie, C. Y.; Shi, Y. P.; Jiang, S. L.; Huan, Y. H. et al. Thickness tunable wedding-cake-like MoS2 flakes for high-performance optoelectronics. ACS Nano2019, 13, 3649–3658.Google Scholar
  45. [45]
    Shi, J. P.; Tong, R.; Zhou, X. B.; Gong, Y.; Zhang, Z. P.; Ji, Q. Q.; Zhang, Y.; Fang, Q. Y.; Gu, L.; Wang, X. N. et al. Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv. Mater.2016, 28, 10664–10672.Google Scholar
  46. [46]
    Yasir, M.; Kuzmin, M.; Punkkinen, M. P. J.; Mäkelä, J.; Tuominen, M.; Dahl, J.; Laukkanen, P.; Kokko, K. Synthesis and properties of crystalline thin film of antimony trioxide on the Si(1 0 0) substrate. Appl. Surf. Sci.2015, 349, 259–263.Google Scholar
  47. [47]
    Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der waals broadband detectors for dual-band detection. Adv. Mater.2017, 29, 1604439.Google Scholar
  48. [48]
    Zhou, X.; Zhou, N.; Li, C.; Song, H. Y.; Zhang, Q.; Hu, X. Z.; Gan, L.; Li, H. Q.; Lü, J. T.; Luo, J. et al. Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors. 2D Mater.2017, 4, 025048.Google Scholar
  49. [49]
    Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun.2017, 8, 1906.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guangzhuang Sun
    • 1
  • Bo Li
    • 2
  • Shifa Wang
    • 3
  • Zhengwei Zhang
    • 1
  • Jia Li
    • 1
  • Xidong Duan
    • 1
    Email author
  • Xiangfeng Duan
    • 4
  1. 1.State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
  2. 2.Department of Applied Physics, School of Physics and ElectronicsHunan UniversityChangshaChina
  3. 3.School of Electronic and Information EngineeringChongqing Three Gorges UniversityChongqing, WanzhouChina
  4. 4.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations