Advertisement

Nano Research

, Volume 12, Issue 11, pp 2723–2728 | Cite as

One-step growth of large-area silicon nanowire fabrics for high-performance multifunctional wearable sensors

  • Bing-Chang Zhang
  • Jian-Sheng JieEmail author
  • Zhi-Bin Shao
  • Si-Yi Huang
  • Le HeEmail author
  • Xiao-Hong ZhangEmail author
Research Article
  • 75 Downloads

Abstract

Silicon nanowire (SiNW) fabrics are of great interest for fabricating high-performance multifunctional wearable sensors. However, it remains a big challenge to fabricate high-quality SiNW fabrics in a simple and efficient manner. Here we report, for the first time, one-step growth of large-area SiNW fabrics for multifunctional wearable sensors, by using a massive metal-assisted chemical vapor deposition (CVD) method. With bulk Sn as a catalyst source, numerous millimeter-long SiNWs grow and naturally interweave with each other, forming SiNW fabrics over 80 cm2 in one experiment. In addition to intrinsic electronic properties of Si materials, the SiNW fabrics also feature high flexibility, good tailorability and light weight, rendering them ideal for fabricating multifunctional wearable sensors. The prototype sensors based on the SiNW fabrics could effectively detect various stimuli including temperature, light, strain and pressure, with outstanding performance among reported multifunctional sensors. We further demonstrate the integration of the prototype sensors onto the body of a robot, enabling its perception to various environmental stimuli. The ability to prepare high-quality SiNW fabrics in a simple and efficient manner will stimulate the development of wearable devices for applications in portable electronics, Internet of Things, health care and robotics.

Keywords

silicon nanowires fabrics wearable devices multifunctional wearable sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Major Research Plan of the National Natural Science Foundation of China (No. 91833303), the Foundation for Innovation Research Groups of the National Natural Science Foundation of China (No. 51821002), the National Natural Science Foundation of China (Nos. 51672180 and 51802208), the Natural Science Foundation of Jiangsu Province (No. BK20160309), Postdoctoral Research Foundation of China (Nos. 2016M601880 and 2017T100396), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project.

Supplementary material

12274_2019_2505_MOESM1_ESM.pdf (1.9 mb)
One-step growth of large-area silicon nanowire fabrics for high-performance multifunctional wearable sensors.

References

  1. [1]
    Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature2018, 555, 83–88.CrossRefGoogle Scholar
  2. [2]
    Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol.2018, 13, 1048–1056.CrossRefGoogle Scholar
  3. [3]
    Seyedin, S.; Zhang, P.; Naebe, M.; Qin, S.; Chen, J.; Wang, X. G.; Razal, J. M. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Mater. Horiz.2019, 6, 219–249.CrossRefGoogle Scholar
  4. [4]
    Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Advanced carbon for flexible and wearable electronics. Adv. Mater.2019, 31, 1801072.CrossRefGoogle Scholar
  5. [5]
    Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhang, Y.; Liang, X. W.; Sun, R.; Wong, C. P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res.2018, 11, 1938–1955.CrossRefGoogle Scholar
  6. [6]
    Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater.2014, 26, 5310–5336.CrossRefGoogle Scholar
  7. [7]
    Yetisen, A. K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M. R.; Hinestroza, J. P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S. H. Nanotechnology in textiles. ACS Nano2016, 10, 3042–3068.CrossRefGoogle Scholar
  8. [8]
    Li, X. T.; Hu, H. B.; Hua, T.; Xu, B. G.; Jiang, S. X. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res.2018, 11, 5799–5811.CrossRefGoogle Scholar
  9. [9]
    Liu, X.; Tang, C.; Du, X. H.; Xiong, S.; Xi, S. Y.; Liu, Y. F.; Shen, X.; Zheng, Q. B.; Wang, Z. Y.; Wu, Y. et al. A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Mater. Horiz.2017, 4, 477–486.CrossRefGoogle Scholar
  10. [10]
    Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater.2017, 27, 1604795.CrossRefGoogle Scholar
  11. [11]
    Wang, C. Y.; Li, X.; Gao, E. L.; Jian, M. Q.; Xia, K. L.; Wang, Q.; Xu, Z. P.; Ren, T. L.; Zhang, Y. Y. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater.2016, 28, 6640–6648.CrossRefGoogle Scholar
  12. [12]
    Yang, Z.; Pang, Y.; Han, X. L.; Yang, Y. F.; Ling, J.; Jian, M. Q.; Zhang, Y. Y.; Yang, Y.; Ren, T. L. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano2018, 12, 9134–9141.CrossRefGoogle Scholar
  13. [13]
    Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater.2017, 29, 1703700CrossRefGoogle Scholar
  14. [14]
    Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA2005, 102, 12321–12325.CrossRefGoogle Scholar
  15. [15]
    Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun.2018, 9, 244.CrossRefGoogle Scholar
  16. [16]
    Hsu, P. C.; Liu, X. G.; Liu, C.; Xie, X.; Lee, H. R.; Welch, A. J.; Zhao, T.; Cui, Y. Personal thermal management by metallic nanowire-coated textile. Nano Lett.2015, 15, 365–371.CrossRefGoogle Scholar
  17. [17]
    Liao, X. Q.; Liao, Q. L.; Zhang, Z.; Yan, X. Q.; Liang, Q. J.; Wang, Q. Y.; Li, M. H.; Zhang, Y. A highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater.2016, 26, 3074–3081.CrossRefGoogle Scholar
  18. [18]
    Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater.2018, 30, 1801729.CrossRefGoogle Scholar
  19. [19]
    Hosticka, B. J.; Brockherde, W.; Hammerschmidt, D. Silicon sensor systems. In Smart Sensor Interfaces. Huijsing, J. H.; Meijer, G. C. M; Springer: Boston, MA, 1997; pp 99–111.CrossRefGoogle Scholar
  20. [20]
    Hull, R. Properties of Crystalline Silicon; INSPEC, the Institution of Electrical Engineers: London, 1999.Google Scholar
  21. [21]
    Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A. Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc.2011, 133, 20914–20921.CrossRefGoogle Scholar
  22. [22]
    Xu, Z.; Sun, H. Y.; Zhao, X. L.; Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater.2013, 25, 188–193.CrossRefGoogle Scholar
  23. [23]
    Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science2007, 318, 1892–1895.CrossRefGoogle Scholar
  24. [24]
    Heo, K.; Cho, E.; Yang, J. E.; Kim, M. H.; Lee, M.; Lee, B. Y.; Kwon, S. G.; Lee, M. S.; Jo, M. H.; Choi, H. J. et al. Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. Nano Lett.2008, 8, 4523–4527.CrossRefGoogle Scholar
  25. [25]
    Wang, H.; Wang, J. T.; Cao, Z. X.; Zhang, W. J.; Lee, C. S.; Lee, S. T.; Zhang, X. H. A surface curvature oscillation model for vapour–liquid–solid growth of periodic one-dimensional nanostructures. Nat. Commun.2015, 6, 6412.CrossRefGoogle Scholar
  26. [26]
    Wang, H.; Zhang, X. H.; Meng, X. M.; Zhou, S. M.; Wu, S. K.; Shi, W. S.; Lee, S. Bulk preparation of Si-SiOx hierarchical structures: high-density radially oriented amorphous silica nanowires on a single-crystal silicon nanocore. Angew. Chem., Int. Ed.2005, 44, 6934–6937.CrossRefGoogle Scholar
  27. [27]
    Zhang, B. C.; Wang, H.; He, L.; Zheng, C. J.; Jie, J. S.; Lifshitz, Y.; Lee, S. T.; Zhang, X. H. Centimeter-long single-crystalline Si nanowires. Nano Lett.2017, 17, 7323–7329.CrossRefGoogle Scholar
  28. [28]
    Moutanabbir, O.; Isheim, D.; Blumtritt, H.; Senz, S.; Pippel, E.; Seidman, D. N. Colossal injection of catalyst atoms into silicon nanowires. Nature2013, 496, 78–82.CrossRefGoogle Scholar
  29. [29]
    Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol.2008, 3, 168–173.CrossRefGoogle Scholar
  30. [30]
    Norton, P.; Brandt, J. Temperature coefficient of resistance for p- and n-type silicon. Solid-State Electron.1978, 21, 969–974.CrossRefGoogle Scholar
  31. [31]
    Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun.2014, 5, 5747.CrossRefGoogle Scholar
  32. [32]
    Wu, M. H.; Liu, K. H.; Wang, W. L.; Sui, Y.; Bai, X. D.; Wang, E. G. Ultralong aligned single-walled carbon nanotubes on flexible fluorphlogopite mica for strain sensors. Nano Res.2012, 5, 443–449.CrossRefGoogle Scholar
  33. [33]
    Milne, J. S.; Rowe, A. C. H.; Arscott, S.; Renner, C. Giant piezoresistance effects in silicon nanowires and microwires. Phys. Rev. Lett.2010, 105, 226802.CrossRefGoogle Scholar
  34. [34]
    Li, R. Y.; Si, Y.; Zhu, Z. J.; Guo, Y. J.; Zhang, Y. J.; Pan, N.; Sun, G.; Pan, T. R. Supercapacitive iontronic nanofabric sensing. Adv. Mater.2017, 29, 1700253.CrossRefGoogle Scholar
  35. [35]
    Ge, J.; Sun, L.; Zhang, F. R.; Zhang, Y.; Shi, L. A.; Zhao, H. Y.; Zhu, H. W.; Jiang, H. L.; Yu, S. H. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater.2016, 28, 722–728.CrossRefGoogle Scholar
  36. [36]
    Kim, S. J.; Song, W.; Yi, Y.; Min, B. K.; Mondal, S.; An, K. S.; Choi, C. G. High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces2018, 10, 3921–3928.CrossRefGoogle Scholar
  37. [37]
    Ho, D. H.; Sun, Q. J.; Kim, S. Y.; Han, J. T.; Kim, D. H.; Cho, J. H. Stretchable and multimodal all graphene electronic skin. Adv. Mater.2016, 28, 2601–2608.CrossRefGoogle Scholar
  38. [38]
    Yao, S. S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale2014, 6, 2345–2352.CrossRefGoogle Scholar
  39. [39]
    Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. A. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol.2011, 6, 788–792.CrossRefGoogle Scholar
  40. [40]
    Park, J.; Kim, M.; Lee, Y.; Lee, H. S.; Ko, H. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv.2015, 1, e1500661.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouChina

Personalised recommendations