Valleytronics in transition metal dichalcogenides materials

  • Yanping LiuEmail author
  • Yuanji Gao
  • Siyu Zhang
  • Jun He
  • Juan Yu
  • Zongwen LiuEmail author
Review Article


Valley degree of freedom in the first Brillouin zone of Bloch electrons offers an innovative approach to information storage and quantum computation. Broken inversion symmetry together with the presence of time-reversal symmetry endows Bloch electrons non-zero Berry curvature and orbital magnetic moment, which contribute to the valley Hall effect and optical selection rules in valleytronics. Furthermore, the emerging transition metal dichalcogenides (TMDs) materials naturally become the ideal candidates for valleytronics research attributable to their novel structural, photonic and electronic properties, especially the direct bandgap and broken inversion symmetry in the monolayer. However, the mechanism of inter-valley relaxation remains ambiguous and the complicated manipulation of valley predominantly incumbers the realization of valleytronic devices. In this review, we systematically demonstrate the fundamental properties and tuning strategies (optical, electrical, magnetic and mechanical tuning) of valley degree of freedom, summarize the recent progress of TMD-based valleytronic devices. We also highlight the conclusion of present challenges as well as the perspective on the further investigations in valleytronics.


valleytronics valley excitons transition metal dichalcogenides (TMDs) valley Hall effect quantum devices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Y. P. L would like to acknowledge Prof. Zhu for valuable discussions. This work is supported by the Innovation-driven Project (No. 2017CX019) and Youth Innovation Team (No. 2019012) of CSU, Hunan Key Research and Development Project (No. 2019GK233), and partially by the National Natural Science Foundation of China (No. 61775241).


  1. [1]
    Wunderlich, J.; Park, B. G.; Irvine, A. C.; Zârbo, L. P.; Rozkotová, E.; Nemec, P.; Novák, V.; Sinova, J.; Jungwirth, T. Spin hall effect transistor. Science 2010, 330, 1801–1804.CrossRefGoogle Scholar
  2. [2]
    Roche, S.; Åkerman, J.; Beschoten, B.; Charlier, J. C.; Chshiev, M.; Prasad Dash, S.; Dlubak, B.; Fabian, J.; Fert, A.; Guimarães, M. et al. Graphene spintronics: The E+uropean Flagship perspective. 2D Mater. 2015, 2, 030202.CrossRefGoogle Scholar
  3. [3]
    Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194.CrossRefGoogle Scholar
  4. [4]
    Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807.CrossRefGoogle Scholar
  5. [5]
    Gurram, M.; Omar, S.; Van Wees, B. J. Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der Waals heterostructures: Progress and perspectives. 2D Mater. 2018, 5, 032004.CrossRefGoogle Scholar
  6. [6]
    Feng, Y. P.; Shen, L.; Yang, M.; Wang, A. Z.; Zeng, M. G.; Wu, Q. Y.; Chintalapati, S.; Chang, C. R. Prospects of spintronics based on 2D materials. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 7, e1313.Google Scholar
  7. [7]
    Dankert, A.; Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 2017, 8, 16093.CrossRefGoogle Scholar
  8. [8]
    Cheng, L.; Wang, X. B.; Yang, W. F.; Chai, J. W.; Yang, M.; Chen, M. J.; Wu, Y.; Chen, X. X.; Chi, D. Z.; Goh, K. E. J. et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys. 2019, 15, 347–351.CrossRefGoogle Scholar
  9. [9]
    Liu, Y. P.; Idzuchi, H.; Fukuma, Y.; Rousseau, O.; Otani, Y.; Lew, W. S. Spin injection properties in trilayer graphene lateral spin valves. Appl. Phys. Lett. 2013, 102, 033105.CrossRefGoogle Scholar
  10. [10]
    Li, M. J.; Zhang, D.; Gao, Y. L.; Cao, C.; Long, M. Q. Half-metallicity and spin-polarization transport properties in transition-metal atoms single-edge-terminated zigzag a-graphyne nanoribbons. Org. Electron. 2017, 44, 168–175.CrossRefGoogle Scholar
  11. [11]
    Zhu, Z. W.; Collaudin, A.; Fauqué, B.; Kang, W.; Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nat. Phys. 2012, 8, 89–94.CrossRefGoogle Scholar
  12. [12]
    Yu, H. Y.; Cui, X. D.; Xu, X. D.; Yao, W. Valley excitons in two-dimensional semiconductors. Nat. Sci. Rev. 2015, 2, 57–70.CrossRefGoogle Scholar
  13. [13]
    Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.CrossRefGoogle Scholar
  14. [14]
    Nebel, C. E. Valleytronics: Electrons dance in diamond. Nat. Mater. 2013, 12, 690–691.CrossRefGoogle Scholar
  15. [15]
    Isberg, J.; Gabrysch, M.; Hammersberg, J.; Majdi, S.; Kovi, K. K.; Twitchen, D. J. Generation, transport and detection of valley-polarized electrons in diamond. Nat. Mater. 2013, 12, 760–764.CrossRefGoogle Scholar
  16. [16]
    Gunlycke, D.; White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 2011, 106, 136806.CrossRefGoogle Scholar
  17. [17]
    Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30–33.CrossRefGoogle Scholar
  18. [18]
    Friesen, M.; Rugheimer, P.; Savage, D. E.; Lagally, M. G.; Van Der Weide, D. W.; Joynt, R.; Eriksson, M. A. Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 2003, 67, 121301(R).CrossRefGoogle Scholar
  19. [19]
    Sun, J. T.; Meng, S. The valley degree of freedom of an electron. Acta Phys. Sin. 2015, 64, 187301.Google Scholar
  20. [20]
    Liu, Y. P.; Lew, W. S.; Liu, Z. W. Observation of anomalous resistance behavior in bilayer graphene. Nanoscale Res. Lett. 2017, 12, 48.CrossRefGoogle Scholar
  21. [21]
    Liu, Y. M.; Zhou, X. Y.; Zhou, M.; Long, M. Q.; Zhou, G. H. Electric field induced spin and valley polarization within a magnetically confined silicene channel. J. Appl. Phys. 2014, 116, 244312.CrossRefGoogle Scholar
  22. [22]
    Xiao, J.; Zhao, M.; Wang, Y.; Zhang, X. Excitons in atomically thin 2D semiconductors and their applications. Nanophotonics 2017, 6, 1309–1328.CrossRefGoogle Scholar
  23. [23]
    Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.CrossRefGoogle Scholar
  24. [24]
    Mak, K. F.; Xiao, D.; Shan, J. Light-valley interactions in 2D semiconductors. Nat. Photonics 2018, 12, 451–460.CrossRefGoogle Scholar
  25. [25]
    Wang, J.; Long, M. Q.; Zhao, W. S.; Hu, Y.; Wang, G. F.; Chan, K. S. A valley and spin filter based on gapped graphene. J. Phys.: Condens. Matter 2016, 28, 285302.Google Scholar
  26. [26]
    Vitale, S. A.; Nezich, D.; Varghese, J. O.; Kim, P.; Gedik, N.; Jarillo-Herrero, P.; Xiao, D.; Rothschild, M. Valleytronics: Opportunities, challenges, and paths forward. Small 2018, 14, 1801483.CrossRefGoogle Scholar
  27. [27]
    Wang, P.; Zhou, M.; Liu, G.; Liu, Y. M.; Long, M. Q.; Zhou, G. H. Spinand valley-dependent transport properties for metal-silicene-metal junctions. Eur. Phys. J. B 2015, 88, 243.CrossRefGoogle Scholar
  28. [28]
    Ye, J. L.; Niu, B. H.; Li, Y.; Li, T.; Zhang, X. H. Exciton valley dynamics in monolayer Mo1−xWxSe2 (x = 0, 0.5, 1). Appl. Phys. Lett. 2017, 111, 152106.CrossRefGoogle Scholar
  29. [29]
    Zhang, Q. T.; Chan, K. S.; Long, M. Q. Nearly perfect valley filter in silicene. J. Phys.: Condens. Matter 2016, 28, 055301.Google Scholar
  30. [30]
    Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.CrossRefGoogle Scholar
  31. [31]
    Rivera, P.; Yu, H. Y.; Seyler, K. L.; Wilson, N. P.; Yao, W.; Xu, X. D. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004–1015.CrossRefGoogle Scholar
  32. [32]
    Seyler, K. L.; Zhang, D.; Huang, B.; Linpeng, X. Y.; Wilson, N. P.; Taniguchi, T.; Watanabe, K.; Yao, W.; Xiao, D.; McGuire, M. A. et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 2018, 18, 3823–3828.CrossRefGoogle Scholar
  33. [33]
    Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.CrossRefGoogle Scholar
  34. [34]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  35. [35]
    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  36. [36]
    Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809.CrossRefGoogle Scholar
  37. [37]
    Xiao, D.; Chang, M. C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007.CrossRefGoogle Scholar
  38. [38]
    Chang, M. C.; Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B 1996, 53, 7010–7023.CrossRefGoogle Scholar
  39. [39]
    Gorbachev, R. V.; Song, J. C. W.; Yu, G. L.; Kretinin, A. V.; Withers, F.; Yao, W.; Mishchenko, A.; Grigorieva, I. V.; Novoselov, K. S.; Levitov, L. S. et al. Detecting topological currents in graphene superlattices. Science 2014, 346, 448–451.CrossRefGoogle Scholar
  40. [40]
    Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.CrossRefGoogle Scholar
  41. [41]
    Xie, L. M. Two-dimensional transition metal dichalcogenide alloys: Preparation, characterization and applications. Nanoscale 2015, 7, 18392–18401.CrossRefGoogle Scholar
  42. [42]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  43. [43]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  44. [44]
    Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.CrossRefGoogle Scholar
  45. [45]
    Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.CrossRefGoogle Scholar
  46. [46]
    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.CrossRefGoogle Scholar
  47. [47]
    Liu, Y. P.; Cao, L. K.; Zhong, J. H.; Yu, J.; He, J.; Liu, Z. W. Synthesis of bismuth selenide nanoplates by solvothermal methods and its stacking optical properties. J. Appl. Phys. 2019, 125, 035302.CrossRefGoogle Scholar
  48. [48]
    Liu, Y. P.; Tom, K.; Zhang, X. W.; Lou, S.; Liu, Y.; Yao, J. Alloying effect on bright-dark exciton states in ternary monolayer MoxW1−xSe2. New J. Phys. 2017, 19, 073018.CrossRefGoogle Scholar
  49. [49]
    Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.CrossRefGoogle Scholar
  50. [50]
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  51. [51]
    Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.CrossRefGoogle Scholar
  52. [52]
    High, A. A.; Novitskaya, E. E.; Butov, L. V.; Hanson, M.; Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science 2008, 321, 229–231.CrossRefGoogle Scholar
  53. [53]
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.CrossRefGoogle Scholar
  54. [54]
    Zhang, C. D.; Johnson, A.; Hsu, C. L.; Li, L. J.; Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 2014, 14, 2443–2447.CrossRefGoogle Scholar
  55. [55]
    Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.CrossRefGoogle Scholar
  56. [56]
    Liu, H. J.; Jiao, L.; Yang, F.; Cai, Y.; Wu, X. X.; Ho, W.; Gao, C. L.; Jia, J. F.; Wang, N.; Fan, H. et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett. 2014, 113, 066105.CrossRefGoogle Scholar
  57. [57]
    Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 2013, 88, 245403.CrossRefGoogle Scholar
  58. [58]
    Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.CrossRefGoogle Scholar
  59. [59]
    Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.CrossRefGoogle Scholar
  60. [60]
    He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.CrossRefGoogle Scholar
  61. [61]
    Liu, Y. P.; Tom, K.; Wang, X.; Huang, C. M.; Yuan, H. T.; Ding, H.; Ko, C.; Suh, J.; Pan, L.; Persson, K. A. et al. Dynamic control of optical response in layered metal chalcogenide nanoplates. Nano Lett. 2016, 16, 488–496.CrossRefGoogle Scholar
  62. [62]
    Yamamoto, M.; Shimazaki, Y.; Borzenets, I. V.; Tarucha, S. Valley hall effect in two-dimensional hexagonal lattices. J. Phys. Soc. Jpn. 2015, 84, 121006.CrossRefGoogle Scholar
  63. [63]
    Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.CrossRefGoogle Scholar
  64. [64]
    Tong, W. Y; Duan, C. G. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers. npj Quantum Mater. 2017, 2, 47.CrossRefGoogle Scholar
  65. [65]
    Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492.CrossRefGoogle Scholar
  66. [66]
    Onga, M.; Zhang, Y. J.; Ideue, T.; Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater. 2017, 16, 1193–1197.CrossRefGoogle Scholar
  67. [67]
    Wang, Y. L.; Cong, C. X.; Shang, J. Z.; Eginligil, M.; Jin, Y. Q.; Li, G.; Chen, Y.; Peimyoo, N.; Yu, T. Unveiling exceptionally robust valley contrast in AA- and AB-stacked bilayer WS2. Nanoscale Horiz. 2019, 4, 396–403.CrossRefGoogle Scholar
  68. [68]
    Manca, M.; Glazov, M. M.; Robert, C.; Cadiz, F.; Taniguchi, T.; Watanabe, K.; Courtade, E.; Amand, T.; Renucci, P.; Marie, X. et al. Enabling valley selective exciton scattering in monolayer WSe2 through upconversion. Nat. Commun. 2017, 8, 14927.CrossRefGoogle Scholar
  69. [69]
    Jiang, C. Y.; Xu, W. G.; Rasmita, A.; Huang, Z. M.; Li, K.; Xiong, Q. H.; Gao, W. B. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 2018, 9, 753.CrossRefGoogle Scholar
  70. [70]
    Ye, Y.; Xiao, J.; Wang, H. L.; Ye, Z. L.; Zhu, H. Y.; Zhao, M.; Wang, Y.; Zhao, J. H.; Yin, X. B.; Zhang, X. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol. 2016, 11, 598–602.CrossRefGoogle Scholar
  71. [71]
    Wang, Z. F.; Chiu, Y. H.; Honz, K.; Mak, K. F.; Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 2018, 18, 137–143.CrossRefGoogle Scholar
  72. [72]
    Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 2018, 560, 340–344.CrossRefGoogle Scholar
  73. [73]
    Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416–1421.CrossRefGoogle Scholar
  74. [74]
    Ross, J. S.; Rivera, P.; Schaibley, J.; Lee-Wong, E.; Yu, H. Y.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Mandrus, D.; Cobden, D. et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 2017, 17, 638–643.CrossRefGoogle Scholar
  75. [75]
    Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268–272.CrossRefGoogle Scholar
  76. [76]
    Wu, S. F.; Ross, J. S.; Liu, G. B.; Aivazian, G.; Jones, A.; Fei, Z. Y.; Zhu, W. G.; Xiao, D.; Yao, W.; Cobden, D. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149–153.CrossRefGoogle Scholar
  77. [77]
    Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 2016, 11, 421–425.CrossRefGoogle Scholar
  78. [78]
    Stier, A. V.; McCreary, K. M.; Jonker, B. T.; Kono, J.; Crooker, S. A. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun. 2016, 7, 10643.CrossRefGoogle Scholar
  79. [79]
    Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.CrossRefGoogle Scholar
  80. [80]
    MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.CrossRefGoogle Scholar
  81. [81]
    Cai, T. Y.; Yang, S. A.; Li, X.; Zhang, F.; Shi, J. R.; Yao, W.; Niu, Q. Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides. Phys. Rev. B 2013, 88, 115140.CrossRefGoogle Scholar
  82. [82]
    Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148–152.CrossRefGoogle Scholar
  83. [83]
    Li, Y. L.; Ludwig, J.; Low, T.; Chernikov, A.; Cui, X.; Arefe, G.; Kim, Y. D.; Van Der Zande, A. M.; Rigosi, A.; Hill, H. M. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 2014, 113, 266804.CrossRefGoogle Scholar
  84. [84]
    Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoglu, A. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 2015, 11, 141–147.CrossRefGoogle Scholar
  85. [85]
    Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301.CrossRefGoogle Scholar
  86. [86]
    Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63–84.CrossRefGoogle Scholar
  87. [87]
    He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.CrossRefGoogle Scholar
  88. [88]
    Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.CrossRefGoogle Scholar
  89. [89]
    Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.CrossRefGoogle Scholar
  90. [90]
    Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.CrossRefGoogle Scholar
  91. [91]
    Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shin, C. K. Interlayer couplings, moire patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.CrossRefGoogle Scholar
  92. [92]
    Xu, W. S.; Kozawa, D.; Liu, Y.; Sheng, Y. W.; Wei, K.; Koman, V. B.; Wang, S. S.; Wang, X. C.; Jiang, T.; Strano, M. S. et al. Determining the optimized interlayer separation distance in vertical stacked 2D WS2:hBN:MoS2 heterostructures for exciton energy transfer. Small 2018, 14, 1703727.CrossRefGoogle Scholar
  93. [93]
    Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.CrossRefGoogle Scholar
  94. [94]
    Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.CrossRefGoogle Scholar
  95. [95]
    Jin, C. H.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994–1003.CrossRefGoogle Scholar
  96. [96]
    Hsu, W. T.; Lu, L. S.; Wu, P. H.; Lee, M. H.; Chen, P. J.; Wu, P. Y.; Chou, Y. C.; Jeng, H. T.; Li, L. J.; Chu, M. W. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 2018, 9, 1356.CrossRefGoogle Scholar
  97. [97]
    Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.CrossRefGoogle Scholar
  98. [98]
    Cha, S.; Noh, M.; Kim, J.; Son, J.; Bae, H.; Lee, D.; Kim, H.; Lee, J.; Shin, H. S.; Sim, S. et al. Generation, transport and detection of valley- locked spin photocurrent in WSe2-graphene-Bi2Se3 heterostructures. Nat. Nanotechnol. 2018, 13, 910–914.CrossRefGoogle Scholar
  99. [99]
    Kim, J.; Jin, C. H.; Chen, B.; Cai, H.; Zhao, T.; Lee, P.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 2017, 3, e1700518.CrossRefGoogle Scholar
  100. [100]
    Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. Acs Nano 2014, 8, 12717–12724.CrossRefGoogle Scholar
  101. [101]
    Baranowski, M.; Surrente, A.; Klopotowski, L.; Urban, J. M.; Zhang, N.; Maude, D. K.; Wiwatowski, K.; Mackowski, S.; Kung, Y. C.; Dumcenco, D. et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett. 2017, 17, 6360–6365.CrossRefGoogle Scholar
  102. [102]
    Mai, C.; Barrette, A.; Yu, Y. F.; Semenov, Y. G.; Kim, K. W.; Cao, L. Y.; Gundogdu, K. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 2014, 14, 202–206.CrossRefGoogle Scholar
  103. [103]
    Moody, G.; Tran, K.; Lu, X. B.; Autry, T.; Fraser, J. M.; Mirin, R. P.; Yang, L.; Li, X. Q.; Silverman, K. L. Microsecond valley lifetime of defect-bound excitons in monolayer WSe2. Phys. Rev. Lett. 2018, 121, 057403.CrossRefGoogle Scholar
  104. [104]
    Hsu, W. T.; Chen, Y. L.; Chen, C. H.; Liu, P. S.; Hou, T. H.; Li, L. J.; Chang, W. H. Optically initialized robust valley-polarized holes in monolayer WSe2. Nat. Commun. 2015, 6, 8963.CrossRefGoogle Scholar
  105. [105]
    Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.CrossRefGoogle Scholar
  106. [106]
    Wan, Y.; Xiao, J.; Li, J. Z.; Fang, X.; Zhang, K.; Fu, L.; Li, P.; Song, Z. G.; Zhang, H.; Wang, Y. L. et al. Epitaxial single-layer MoS2 on GaN with enhanced valley helicity. Adv. Mater. 2018, 30, 1703888.CrossRefGoogle Scholar
  107. [107]
    Zhang, Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725–728.CrossRefGoogle Scholar
  108. [108]
    Yang, W. H.; Shang, J. Z.; Wang, J. P.; Shen, X. N.; Cao, B. C.; Peimyoo, N.; Zou, C. J.; Chen, Y.; Wang, Y. L.; Cong, C. X. et al. Electrically tunable valley-light emitting diode (vLED) based on CVD-grown monolayer WS2. Nano Lett. 2016, 16, 1560–1567.CrossRefGoogle Scholar
  109. [109]
    Ciarrocchi, A.; Unuchek, D.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 2019, 13, 131–136.CrossRefGoogle Scholar
  110. [110]
    Tong, W. Y.; Gong, S. J.; Wan, X. G.; Duan, C. G. Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun. 2016, 7, 13612.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast ProcessCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of High Performance Complex ManufacturingCentral South UniversityChangshaChina
  3. 3.School of Electronics and InformationHangzhou Dianzi UniversityHangzhouChina
  4. 4.School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia

Personalised recommendations