Advertisement

Iron sulfides with dopamine-derived carbon coating as superior performance anodes for sodium-ion batteries

  • Aihua Jin
  • Seung-Ho Yu
  • Jae-Hyuk Park
  • Seok Mun Kang
  • Mi-Ju Kim
  • Tae-Yeol Jeon
  • Junyoung MunEmail author
  • Yung-Eun SungEmail author
Research Article
  • 20 Downloads

Abstract

High energy ball-milled iron sulfides with thin carbon layer coating (BM-FeS/C composites) were prepared by the simple and economical process. Ball-milled process, followed by carbon coating, reduced the particle size and increased the electrical conductivity. When employed as sodium-ion battery anodes, BM-FeS/C composites showed extremely high electrochemical performance with reversible specific capacity of 589.8 mAh·g−1 after 100 cycles at a current density of 100 mA·g−1. They also exhibited superior rate capabilities of 375.9 mAh·g−1 even at 3.2 A·g−1 and 423.6 mAh·g−1 at 1.5 A·g−1. X-ray absorption near edge structure analysis confirmed the electrochemical pathway for conversion reaction of BM-FeS/C composites.

Keywords

sodium-ion batteries iron sulfides high energy ball-milling dopamine X-ray absorption near edge structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is based upon research conducted at the Institute for Basic Science (IBS) in Republic of Korea and Y. E. S. acknowledges the financial support by IBS-R006-A2.

Supplementary material

12274_2019_2495_MOESM1_ESM.pdf (2.5 mb)
Iron sulfides with dopamine-derived carbon coating as superior performance anodes for sodium-ion batteries

References

  1. [1]
    Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.CrossRefGoogle Scholar
  2. [2]
    Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1744–1751.CrossRefGoogle Scholar
  3. [3]
    Kang, H. Y.; Liu, Y. C.; Cao, K. Z.; Zhao, Y.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899–17913.CrossRefGoogle Scholar
  4. [4]
    Shao, J. Y.; Li, X. R.; Wei, J. L.; Pang, H.; Chen, C. Y. Synthesis of iron phosphate and their composites for lithium/sodium ion batteries. Adv. Sustain. Syst. 2018, 2, 1700154.CrossRefGoogle Scholar
  5. [5]
    Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.CrossRefGoogle Scholar
  6. [6]
    Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169–10173.CrossRefGoogle Scholar
  7. [7]
    Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.CrossRefGoogle Scholar
  8. [8]
    Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2017, 7, 1601329.CrossRefGoogle Scholar
  9. [9]
    Luo, Y. Q.; Tang, Y. J.; Zheng S. S.; Yan, Y.; Xue, H. G.; Pang, H. Dual anode materials for lithium- and sodium-ion batteries. J. Mater. Chem. A 2018, 6, 4236–4259.CrossRefGoogle Scholar
  10. [10]
    Li, Q.; Guo, X.; Zheng, M.; Pang, H. Some MoS2-based materials for sodium-ion battery. Funct. Mater. Lett. 2018, 11, 1840004.CrossRefGoogle Scholar
  11. [11]
    Cho, J. S.; Park, J. S.; Kang, Y. C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 2017, 10, 897–907.CrossRefGoogle Scholar
  12. [12]
    Wu, Z. G.; Li, J. T.; Zhong, Y. J.; Liu, J.; Wang, K.; Guo, X. D.; Huang, L.; Zhong, B. H.; Sun, S. G. Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J. Alloys Compd. 2016, 688, 790–797.CrossRefGoogle Scholar
  13. [13]
    Cao, Z. J.; Song, H. H.; Cao, B.; Ma, J.; Chen, X. H.; Zhou, J. S.; Ma, Z. K. Sheet-on-sheet chrysanthemum-like C/FeS microspheres synthesized by one-step solvothermal method for high-performance sodium-ion batteries. J. Power Sources 2017, 364, 208–214.CrossRefGoogle Scholar
  14. [14]
    Li, Q. D.; Wei, Q. L.; Zuo, W. B.; Huang, L.; Luo, W.; An, Q. Y.; Pelenovich, V. O.; Mai, L. Q.; Zhang, Q. J. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 2017, 8, 160–164.CrossRefGoogle Scholar
  15. [15]
    Lee, S. Y.; Kang, Y. C. Sodium-ion storage properties of FeS-deduced graphene oxide composite powder with a crumpled structure. Chem.-Eur. J. 2016, 22, 2769–2774.CrossRefGoogle Scholar
  16. [16]
    Tan, Y. Z.; Wong, K. W.; Zhang, Z. L.; Ng, K. M. In situ synthesis of iron sulfide embedded porous carbon hollow spheres for sodium ion batteries. Nanoscale 2017, 9, 19408–19414.CrossRefGoogle Scholar
  17. [17]
    Wei, X.; Li, W. H.; Shi, J. A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 27804–27809.CrossRefGoogle Scholar
  18. [18]
    Yu, S. H.; Jin, A. H.; Huang, X.; Yang, Y.; Huang, R.; Brock, J. D.; Sung, Y. E.; Abruña, H. D. SnS/C nanocomposites for high-performance sodium ion battery anodes. RSC Adv. 2018, 8, 23847–23853.CrossRefGoogle Scholar
  19. [19]
    Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.CrossRefGoogle Scholar
  20. [20]
    Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 2014, 26, 4139–4144.Google Scholar
  21. [21]
    Lu, Y.; Li, B.; Zheng, S. S.; Xu, Y. X.; Xue, H. G.; Pang, H. Syntheses and energy storage applications of MxSy (M = Cu, Ag, Au) and their composites: Rechargeable batteries and supercapacitors. Adv. Funct. Mater. 2017, 27, 1703949.CrossRefGoogle Scholar
  22. [22]
    Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nano-composites. Angew. Chem., Int. Ed. 2011, 50, 6799–6802.CrossRefGoogle Scholar
  23. [23]
    Lee, H. J.; Kim, H. Graphite felt coated with dopamine-derived nitrogen-doped carbon as a positive electrode for a vanadium redox flow battery. J. Electrochem. Soc. 2015, 162, A1675–A1681.CrossRefGoogle Scholar
  24. [24]
    Xu, Y. X.; Li, W. Y.; Zhang, F.; Zhang, X. L.; Zhang, W. J.; Lee, C. S.; Tang, Y. B. In situ incorporation of FeS nanoparticles/carbon nanosheets composite with an interconnected porous structure as a high-performance anode for lithium ion batteries. J. Mater. Chem. A 2016, 4, 3697–3703.CrossRefGoogle Scholar
  25. [25]
    Sun, Y.; Dai, Y.; Duan, Y. Q.; Xu, X.; Lv, Y.; Yang, L.; Zou, J. L. Biofouling inhibition on nano-silver/ferrous sulfide/partly-graphitized carbon cathode with enhanced catalytic activity and durability for microbial fuel cells. Carbon 2017, 119, 394–402.CrossRefGoogle Scholar
  26. [26]
    Wang, Q. H.; Zhang, W. C.; Guo, C.; Liu, Y. J.; Wang, C.; Guo, Z. P. In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1703390.CrossRefGoogle Scholar
  27. [27]
    Pratt, A. R.; Muir, I. J.; Nesbitt, H. W. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim. Cosmochim. Acta 1994, 58, 827–841.CrossRefGoogle Scholar
  28. [28]
    Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.CrossRefGoogle Scholar
  29. [29]
    Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.CrossRefGoogle Scholar
  30. [30]
    Tao, S.; Wu, D. J.; Chen, S. M.; Qian, B.; Chu, W. S.; Song, L. A versatile strategy for ultrathin SnS2 nanosheets confined in a N-doped graphene sheet composite for high performance lithium and sodium-ion batteries. Chem. Commun. 2018, 54, 8379–8382.CrossRefGoogle Scholar
  31. [31]
    Wang, Y. X.; Seng, K. H.; Chou, S. L.; Wang, J. Z.; Guo, Z. P.; Wexler, D.; Liu, H. K.; Dou, S. X. Reversible sodium storage via conversion reaction of a MoS2-C composite. Chem. Commun. 2014, 50, 10730–10733.CrossRefGoogle Scholar
  32. [32]
    Xia, C.; Zhang, F.; Liang, H. F.; Alshareef, H. N. Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Res. 2017, 10, 4368–4377.CrossRefGoogle Scholar
  33. [33]
    Hu, X.; Chen, J. X.; Zeng, G.; Jia, J. C.; Cai, P. W.; Chai, G. L.; Wen, Z. H. Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. J. Mater. Chem. A 2017, 5, 23460–23470.CrossRefGoogle Scholar
  34. [34]
    Zhao, C. T.; Yu, C.; Zhang, M. D.; Sun, Q.; Li, S. F.; Banis, M. N.; Han, X. T.; Dong, Q.; Yang, J.; Wang, G. et al. Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy 2017, 47, 66–74.CrossRefGoogle Scholar
  35. [35]
    Shadike, Z.; Cao, M. H.; Ding, F.; Sang, L.; Fu, Z. W. Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. Chem. Commun. 2015, 51, 10486–10489.CrossRefGoogle Scholar
  36. [36]
    Wang, T. S.; Hu, P.; Zhang, C. J.; Du, H. P.; Zhang, Z. H.; Wang, X. G.; Chen, S. G.; Xiong, J. W.; Cui, G. L. Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl. Mater. Interfaces 2016, 8, 7811–7817.CrossRefGoogle Scholar
  37. [37]
    Wang, Y. X.; Yang, J. P.; Chou, S. L.; Liu, H. K.; Zhang, W. X.; Zhao, D. Y.; Dou, S. X. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 2015, 6, 8689.CrossRefGoogle Scholar
  38. [38]
    Li, L. L.; Peng, S. J.; Bucher, N.; Chen, H. Y.; Shen, N.; Nagasubramanian, A.; Eldho, E.; Hartung, S.; Ramakrishna, S.; Srinivasan, M. Large-scale synthesis of highly uniform Fe1−xS nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 2017, 37, 81–89.CrossRefGoogle Scholar
  39. [39]
    Kitajou A.; Yamaguchi J.; Hara S.; Okada S. Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power Sources 2014, 247, 391–395.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aihua Jin
    • 1
    • 2
  • Seung-Ho Yu
    • 3
  • Jae-Hyuk Park
    • 1
    • 2
  • Seok Mun Kang
    • 1
    • 2
  • Mi-Ju Kim
    • 1
    • 2
  • Tae-Yeol Jeon
    • 4
  • Junyoung Mun
    • 5
    Email author
  • Yung-Eun Sung
    • 1
    • 2
    Email author
  1. 1.Center for Nanoparticle ResearchInstitute for Basic Science (IBS)SeoulRepublic of Korea
  2. 2.School of Chemical and Biological EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.Department of Chemical and Biological EngineeringKorea UniversitySeongbuk-gu, SeoulRepublic of Korea
  4. 4.Beamline DepartmentPohang Accelerator Laboratory (PAL)PohangRepublic of Korea
  5. 5.Department of Energy and Chemical EngineeringIncheon National UniversityIncheonRepublic of Korea

Personalised recommendations