Nano Research

, Volume 12, Issue 9, pp 2238–2249 | Cite as

Comprehensive study of a versatile polyol synthesis approach for cathode materials for Li-ion batteries

  • Hyeseung Chung
  • Antonin Grenier
  • Ricky Huang
  • Xuefeng Wang
  • Zachary Lebens-Higgins
  • Jean-Marie Doux
  • Shawn Sallis
  • Chengyu Song
  • Peter Ercius
  • Karena Chapman
  • Louis F. J. Piper
  • Hyung-Man Cho
  • Minghao ZhangEmail author
  • Ying Shirley MengEmail author
Research Article


This work reports a comprehensive study of a novel polyol method that can successfully synthesize layered LiNi0.4Mn0.4Co0.2O2, spinel LiNi0.5Mn1.5O4, and olivine LiCoPO4 cathode materials. When properly designed, polyol method offers many advantages such as low cost, ease of use, and proven scalability for industrial applications. Most importantly, the unique properties of polyol solvent allow for greater morphology control as shown by all the resulting materials exhibiting monodispersed nanoparticles morphology. This morphology contributes to improved lithium ion transport due to short diffusion lengths. Polyol-synthesized LiNi0.4Mn0.4Co0.2O2 delivers a reversible capacity of 101 and 82 mAh·g−1 using high current rate of 5C and 10C, respectively. It also displays surprisingly high surface structure stability after charge-discharge processes. Each step of the reaction was investigated to understand the underlying polyol synthesis mechanism. A combination of in situ and ex situ studies reveal the structural and chemical transformation of Ni-Co alloy nanocrystals overwrapped by a Mn- and Li-embedded organic matrix to a series of intermediate phases, and then eventually to the desired layered oxide phase with a homogeneous distribution of Ni, Co, and Mn. We envisage that this type of analysis will promote the development of optimized synthesis protocols by establishing links between experimental factors and important structural and chemical properties of the desired product. The insights can open a new direction of research to synthesize high-performance intercalation compounds by allowing unprecedented control of intermediate phases using experimental parameters.


polyol cathode synthesis nanoparticle LiNi0.4Mn0.4Co0.2O2 (NMC) 



This work is supported by the NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award no. DE-SC0012583. The double aberration-corrected scanning TEM (TEAM 0.5) was performed under a proposal to the National Center for Electron Microscopy facility of the Molecular Foundry. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE- AC02-06CH11357. The work at the ALS was supported by the Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank beamline scientists Wanli Yang for his assistance with measurements at the ALS iRIXS endstation (Beamline 8.0.1).

Supplementary material

12274_2019_2494_MOESM1_ESM.pdf (5.3 mb)
Comprehensive study of a versatile polyol synthesis approach for cathode materials for Li-ion batteries


  1. [1]
    Liu, C. F.; Neale, Z. G.; Cao, G. Z. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19, 109–123.CrossRefGoogle Scholar
  2. [2]
    Cho, S. J.; Uddin, M. J.; Alaboina, P. Review of nanotechnology for cathode materials in batteries. In Emerging Nanotechnologies in Rechargeable Energy Storage Systems: A volume in Micro and Nano Technologies; Rodriguez-Martinez, L. M.; Omar, N., Eds.; Elsevier Inc.: Amsterdam, 2017.Google Scholar
  3. [3]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  4. [4]
    Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.CrossRefGoogle Scholar
  5. [5]
    Brodd, R. J. Batteries for Sustainability: Selected Entries from the Encyclopedia of Sustainability Science and Technology; Springer-Verlag: New York, 2013.CrossRefGoogle Scholar
  6. [6]
    Deshazer, H. D.; La Mantia, F.; Wessells, C.; Huggins, R. A.; Cui, Y. Synthesis of nanoscale lithium-ion battery cathode materials using a porous polymer precursor method. J. Electrochem. Soc. 2011, 158, A1079–A1082.CrossRefGoogle Scholar
  7. [7]
    Zhang, Z.; Zhu, S. R.; Huang, J. D.; Yan, C. M. Acacia gum-assisted co-precipitating synthesis of LrNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. Ionics 2016, 22, 621–627.CrossRefGoogle Scholar
  8. [8]
    Zhang, M. H.; Liu, H. D.; Liu, Z.; Fang, C. C.; Meng, Y. S. Modified coprecipitation synthesis of mesostructure-controlled Li-rich layered oxides for minimizing voltage degradation. ACS Appl. Mater. Interfaces 2018, 1, 3369–3376.Google Scholar
  9. [9]
    Zhao, R. R.; Yang, Z. L.; Liang, J. X.; Lu, D. L.; Liang, C. C.; Guan, X. C.; Gao, A. M.; Chen, H. Y. Understanding the role of Na-doping on Ni-rich layered oxide LiNi0.5Co0.2Mn0.3O2. J. Alloys Compd. 2016, 689, 318–325.CrossRefGoogle Scholar
  10. [10]
    Shi, Y.; Zhang, M. H.; Fang, C. C.; Meng, Y. S. Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. J. Power Sources 2018, 394, 114–121.CrossRefGoogle Scholar
  11. [11]
    Zheng, J. M.; Gu, M.; Genc, A.; Xiao, J.; Xu, P. H.; Chen, X. L.; Zhu, Z. H.; Zhao, W. B.; Pullan, L.; Wang, C. M. et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 2014, 14, 2628–2635.CrossRefGoogle Scholar
  12. [12]
    Cao, X.; Zhao, Y.; Zhu, L.; Xie, L.; Cao, X.; Xiong, S.; Wang, C. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 as cathode materials for Li-ion batteries via an efficacious sol-gel method. Int. J. Electrochem. Sci. 2016, 11, 5267–5278.CrossRefGoogle Scholar
  13. [13]
    Fiévet, F.; Lagier, J. P.; Blin, B.; Beaudoin, B.; Figlarz, M. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 1989, 32–33, 198–205.CrossRefGoogle Scholar
  14. [14]
    Fiévet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J. Y.; Sicard, L.; Viau, G. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 2018, 47, 5187–5233.CrossRefGoogle Scholar
  15. [15]
    Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.CrossRefGoogle Scholar
  16. [16]
    Chupas, P. J.; Chapman, K. W.; Kurtz, C.; Hanson, J. C.; Lee, P. L.; Grey, C. P. A versatile sample-environment cell for non-ambient X-ray scattering experiments. J. Appl. Cryst. 2008, 41, 822–824.CrossRefGoogle Scholar
  17. [17]
    Toby, B. H.; Von Dreele, R. B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549.CrossRefGoogle Scholar
  18. [18]
    Juhás, P.; Davis, T.; Farrow, C. L.; Billinge, S. J. L. PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Cryst. 2013, 46, 560–566.CrossRefGoogle Scholar
  19. [19]
    Farrow, C. L.; Juhas, P.; Liu, J. W.; Bryndin, D.; Božin, E. S.; Bloch, J.; Proffen, T.; Billinge, S. J. L. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys.: Condens. Matter 2007, 19, 335219.Google Scholar
  20. [20]
    Roisnel, T.; Rodríquez-Carvajal, J. WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001, 378–381, 118–123.CrossRefGoogle Scholar
  21. [21]
    Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens. Matter 1993, 192, 55–69.CrossRefGoogle Scholar
  22. [22]
    Qiao, R. M.; Li, Q. H.; Zhuo, Z. Q.; Sallis, S.; Fuchs, O.; Blum, M.; Weinhardt, L.; Heske, C.; Pepper, J.; Jones, M. et al. High-efficiency in situ resonant inelastic X-ray scattering (iRIXS) endstation at the advanced light source. Rev. Sci. Instrum. 2017, 88, 033106.CrossRefGoogle Scholar
  23. [23]
    Li, Q. H.; Qiao, R. M.; Wray, L. A.; Chen, J.; Zhuo, Z. Q.; Chen, Y. X.; Yan, S. S.; Pan, F.; Hussain, Z.; Yang, W. L. Quantitative probe of the transition metal redox in battery electrodes through soft X-ray absorption spectroscopy. J. Phys. D: Appl. Phys. 2016, 49, 413003.CrossRefGoogle Scholar
  24. [24]
    Dong, H.; Chen, Y. C.; Feldmann, C. Polyol synthesis of nanoparticles: Status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem. 2015, 17, 4107–4132.CrossRefGoogle Scholar
  25. [25]
    Imamoto, K.; Arai, M. Specific surface area of aggregate and its relation to concrete drying shrinkage. Mater. Struct. 2008, 41, 323–333.CrossRefGoogle Scholar
  26. [26]
    Capco, D. G.; Chen, Y. S. Nanomaterial: Impacts on Cell Biology and Medicine; Springer: New York, 2014.CrossRefGoogle Scholar
  27. [27]
    Zhang, D. R.; Luo, R. Modifying the BET model for accurately determining specific surface area and surface energy components of aggregates. Constr. Build. Mater. 2018, 175, 653–663.CrossRefGoogle Scholar
  28. [28]
    Tran, N.; Croguennec, L.; Jordy, C.; Biensan, P.; Delmas, C. Influence of the synthesis route on the electrochemical properties of LiNi0.425Mn0.425Co0.15O2. Solid State Ionics 2005, 176, 1539–1547.CrossRefGoogle Scholar
  29. [29]
    Arrebola, J. C.; Caballero, A.; Cruz, M.; Hernán, L.; Morales, J.; Castellón, E. R. Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinel via polymer-assisted synthesis: A method for improving its rate capability and performance in 5 V lithium batteries. Adv. Funct. Mater. 2006, 16, 1904–1912.CrossRefGoogle Scholar
  30. [30]
    Liu, H.; Zhang, X.; He, X.; Senyshyn, A.; Wilken, A.; Zhou, D.; Fromm, O.; Niehoff, P.; Yan, B.; Li, J. et al. Truncated octahedral high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion batteries: Positive influences of Ni/Mn disordering and oxygen vacancies. J. Electrochem. Soc. 2018, 165, A1886–A1896.CrossRefGoogle Scholar
  31. [31]
    Wang, L. P.; Li, H.; Huang, X. J. Electrochemical properties and interfacial reactions of LiNi0.5Mn1.5O4−δ nanorods. Prog. Nat. Sci.: Mater. Int. 2012, 22, 207–212.CrossRefGoogle Scholar
  32. [32]
    Song, J.; Shin, D. W.; Lu, Y. H.; Amos, C. D.; Manthiram, A.; Goodenough, J. B. Role of oxygen vacancies on the performance of Li[Ni0.5−xMn1.5+x]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater. 2012, 24, 3101–3109.CrossRefGoogle Scholar
  33. [33]
    Yang, J. G.; Han, X. P.; Zhang, X. L.; Cheng, F. Y.; Chen, J. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs. micro, ordered phase (P4332) vs. disordered phase (\(F d \overline{3} mF d \overline{3} m\)). Nano Res. 2013, 6, 679–687.CrossRefGoogle Scholar
  34. [34]
    Nytén, A.; Thomas, J. O. A neutron powder diffraction study of LiCoxFe1−xPO4 for x = 0, 0.25, 0.40, 0.60 and 0.75. Solid State Ionics 2006, 177, 1327–1330.CrossRefGoogle Scholar
  35. [35]
    Bramnik, N. N.; Bramnik, K. G.; Baehtz, C.; Ehrenberg, H. Study of the effect of different synthesis routes on Li extraction-insertion from LiCoPO4. J. Power Sources 2005, 145, 74–81.CrossRefGoogle Scholar
  36. [36]
    Ludwig, J.; Nilges, T. Recent progress and developments in lithium cobalt phosphate chemistry-syntheses, polymorphism and properties. J. Power Sources 2018, 382, 101–115.CrossRefGoogle Scholar
  37. [37]
    Mayer, J.; Giannuzzi, L. A.; Kamino, T.; Michael, J. TEM sample preparation and FIB-induced damage. MRS Bull. 2007, 32, 400–407.CrossRefGoogle Scholar
  38. [38]
    Wolff-Goodrich, S.; Lin, F.; Markus, I. M.; Nordlund, D.; Xin, H. L.; Asta, M.; Doeff, M. M. Tailoring the surface properties of LiNi0.4Mn0.4Co0.2O2 by titanium substitution for improved high voltage cycling performance. Phys. Chem. Chem. Phys. 2015, 17, 21778–21781.CrossRefGoogle Scholar
  39. [39]
    Zheng, J. M.; Yan, P. F.; Zhang, J. D.; Engelhard, M. H.; Zhu, Z. H.; Polzin, B. J.; Trask, S.; Xiao, J.; Wang, C. M.; Zhang, J. Suppressed oxygen extraction and degradation of LiNixMnyCozO2cathodes at high charge cut-off voltages. Nano Res. 2017, 10, 4221–4231.CrossRefGoogle Scholar
  40. [40]
    Lin, M. X.; Ben, L. B.; Sun, Y.; Wang, H.; Yang, Z. Z.; Gu, L.; Yu, X. Q.; Yang, X. Q.; Zhao, H. F.; Yu, R. C. et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle. Chem. Mater. 2015, 27, 292–303.CrossRefGoogle Scholar
  41. [41]
    Ben, L. B.; Yu, H. L.; Chen, B.; Chen, Y. Y.; Gong, Y.; Yang, X. N.; Gu, L.; Huang, X. J. Unusual spinel-to-layered transformation in LiMn2O4 cathode explained by electrochemical and thermal stability investigation. ACS Appl. Mater. Interfaces 2017, 9, 35463–35475.CrossRefGoogle Scholar
  42. [42]
    Huang, R.; Ikuhara, Y. STEM characterization for lithium-ion battery cathode materials. Curr. Opin. Solid State Mater. Sci. 2012, 16, 31–38.CrossRefGoogle Scholar
  43. [43]
    Gu, M.; Belharouak, I.; Genc, A.; Wang, Z. G.; Wang, D. P.; Amine, K.; Gao, F.; Zhou, G. W.; Thevuthasan, S.; Baer, D. R. et al. Conflicting roles of nickel in controlling cathode performance in lithium ion batteries. Nano Lett. 2012, 12, 5186–5191.CrossRefGoogle Scholar
  44. [44]
    Armstrong, R. A.; Holzapfel, M.; Novak, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 2006, 128, 8694–8698.CrossRefGoogle Scholar
  45. [45]
    Ryu, W. H.; Lim, S. J.; Kim, W. K.; Kwon, H. 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries. J. Power Sources 2014, 257, 186–191.CrossRefGoogle Scholar
  46. [46]
    Xiao, J.; Chen, X. L.; Sushko, P. V.; Sushko, M. L.; Kovarik, L.; Feng, J. J.; Deng, Z. Q.; Zheng, J. M.; Graff, G. L.; Nie, Z. M. et al. Highperformance LiNi0.5Mn1.5O4 Spinel controlled by Mn3+ concentration and site disorder. Adv. Mater. 2012, 24, 2109–2116.CrossRefGoogle Scholar
  47. [47]
    Wu, Q.; Zhang, X. P.; Sun, S. W.; Wan, N.; Pan, D.; Bai, Y.; Zhu, H. Y.; Hu, Y. S.; Dai, S. Improved electrochemical performance of spinel LiMn1.5Ni0.5O4 through MgF2 nano-coating. Nanoscale 2015, 7, 15609–15617.CrossRefGoogle Scholar
  48. [48]
    Bramnik, N. N.; Nikolowski, K.; Baehtz, G.; Bramnik, K. G.; Ehrenberg, H. Phase transitions occurring upon lithium insertion-extraction of LiCoPO4. Chem. Mater. 2007, 19, 908–915.CrossRefGoogle Scholar
  49. [49]
    Kreder III, K. J.; Assat, G.; Manthiram, A. Microwave-assisted solvothermal synthesis of three polymorphs of LiCoPO4 and their electrochemical properties. Chem. Mater. 2015, 27, 5543–5549.CrossRefGoogle Scholar
  50. [50]
    Julien, C.; Mauger, A.; Zaghib, K.; Groult, H. Optimization of layered cathode materials for lithium-ion batteries. Materials (Basel) 2016, 9, 595.CrossRefGoogle Scholar
  51. [51]
    Kim, D. H.; Kim, J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid-State Lett. 2006, 9, A439–A442.CrossRefGoogle Scholar
  52. [52]
    Chen, Z.; Chao, D. L.; Liu, J. L.; Copley, M.; Lin, J. Y.; Shen, Z. X.; Kim, G. T.; Passerini, S. 1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. J. Mater. Chem. A 2017, 5, 15669–15675.CrossRefGoogle Scholar
  53. [53]
    Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529.CrossRefGoogle Scholar
  54. [54]
    Yoon, W. S.; Balasubramanian, M.; Chung, K. Y.; Yang, X. Q.; McBreen, J.; Grey, C. P.; Fischer, D. A. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1−xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J. Am. Chem. Soc. 2005, 127, 17479–17487.CrossRefGoogle Scholar
  55. [55]
    Shkrob, I. A.; Gilbert, J. A.; Phillips, P. J.; Klie, R.; Haasch, R. T.; Bareño, J.; Abraham, D. P. Chemical weathering of layered Ni-rich oxide electrode materials: Evidence for cation exchange. J. Electrochem. Soc. 2017, 164, A1489–A1498.CrossRefGoogle Scholar
  56. [56]
    Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Mater. Sci. Eng. B 2015, 192, 3–25.CrossRefGoogle Scholar
  57. [57]
    Jiang, X. Y.; Sha, Y. J.; Cai, R.; Shao, Z. P. The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 10536–10544.CrossRefGoogle Scholar
  58. [58]
    Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-nielsen, J. R.; Abild-Pedersen, F.; Nørskov J. K. Atomic-scale imaging of carbon nanofibre. Nature 2004, 427, 426–429.CrossRefGoogle Scholar
  59. [59]
    Yoon, K. R.; Ko, J. W.; Youn, D. Y.; Park, C. B.; Kim, I. D. Synthesis of Ni-based co-catalyst functionalized W: BiVO4 nanofibers for solar water oxidation. Green Chem. 2016, 18, 944–950.CrossRefGoogle Scholar
  60. [60]
    Singh, M. K.; Agarwal, A.; Gopal, R.; Swarnkar, R. K.; Kotnala, R. K. Dumbbell shaped nickel nanocrystals synthesized by a laser induced fragmentation method. J. Mater. Chem. 2011, 21, 11074–11079.CrossRefGoogle Scholar
  61. [61]
    Zhu, J. H.; Wei, S. Y.; Li, Y. F.; Pallavkar, S.; Lin, H. F.; Haldolaarachchige, N.; Luo, Z. P.; Young, D. P.; Guo, Z. H. Comprehensive and sustainable recycling of polymer nanocomposites. J. Mater. Chem. 2011, 21, 16239–16246.CrossRefGoogle Scholar
  62. [62]
    Yao, Q. L.; Chen, X. S.; Lu, Z. H. Catalytic dehydrogenation of NH3BH3, N2H4, and N2H4BH3 for chemical hydrogen storage. Energy Environ. Focus 2014, 3, 236–245.CrossRefGoogle Scholar
  63. [63]
    Shang, H. S.; Pan, K. C.; Zhang, L.; Zhang, B.; Xiang, X. Enhanced activity of supported Ni catalysts promoted by Pt for rapid reduction of aromatic nitro compounds. Nanomaterials 2016, 6, 103.CrossRefGoogle Scholar
  64. [64]
    Owen, E. A.; Jones, D. M. Effect of grain size on the crystal structure of cobalt. Proc. Phys. Soc. B 1954, 67, 456–466.CrossRefGoogle Scholar
  65. [65]
    Li, W.; Borkiewicz, O. J.; Saubanère, M.; Doublet, M. L.; Flahaut, D.; Chupas, P. J.; Chapman, K. W.; Dambournet, D. Atomic structure of 2 nm size metallic cobalt prepared by electrochemical conversion: An in situ pair distribution function study. J. Phys. Chem. C 2018, 122, 23861–23866.CrossRefGoogle Scholar
  66. [66]
    Petit, C.; Wang, Z. L.; Pileni, M. P. Seven-nanometer hexagonal close packed cobalt nanocrystals for high-temperature magnetic applications through a novel annealing process. J. Phys. Chem. B 2005, 109, 15309–15316.CrossRefGoogle Scholar
  67. [67]
    Bertaut, E. F.; Tran Qui, D.; Burlet, P.; Burlet, P.; Thomas, M.; Moreau, J. M. Crystal structure of manganese acetate tetrahydrate. Acta Cryst. 1974, B30, 2234–2236.CrossRefGoogle Scholar
  68. [68]
    Luna, C.; del Puerto Morales, M.; Serna, C. J.; Vázquez, M. Multidomain to single-domain transition for uniform Co80Ni20 nanoparticles. Nanotechnology 2003, 14, 268–272.CrossRefGoogle Scholar
  69. [69]
    Sanz, R.; Luna, C.; Hernández-Vélez, M.; Vázquez, M.; López, D.; Mijangos, C. A magnetopolymeric nanocomposite: Co80Ni20 nanoparticles in a PVC matrix. Nanotechnology 2005, 16, 278–281.CrossRefGoogle Scholar
  70. [70]
    Regan, T. J.; Ohldag, H.; Stamm, C.; Nolting, F.; Lüning, J.; Stöhr, J.; White, R. L. Chemical effects at metal/oxide interfaces studied by X-ray-absorption spectroscopy. Phys. Rev. B 2001, 64, 214422.CrossRefGoogle Scholar
  71. [71]
    Hu, L.; Zhong, H.; Zheng, X. R.; Huang, Y. M.; Zhang, P.; Chen, Q. W. CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2012, 2, 986.CrossRefGoogle Scholar
  72. [72]
    Augustin, M.; Fenske, D.; Bardenhagen, I.; Westphal, A.; Knipper, M.; Plaggenborg, T.; Kolny-Olesiak, J.; Parisi, J. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence. Beilstein J. Nanotechnol. 2015, 6, 47–59.CrossRefGoogle Scholar
  73. [73]
    Zhang, D. J.; Jin, C. H.; Li, Z. Y.; Zhang, Z.; Li, J. X. Oxidation behavior of cobalt nanoparticles studied by in situ environmental transmission electron microscopy. Sci. Bull. 2017, 62, 775–778.CrossRefGoogle Scholar
  74. [74]
    Ha, D. H.; Moreau, L. M.; Honrao, S.; Hennig, R. G.; Robinson, R. D. The oxidation of cobalt nanoparticles into Kirkendall-hollowed CoO and Co3O4: The diffusion mechanisms and atomic structural transformations. J. Phys. Chem. C 2013, 117, 14303–14312.CrossRefGoogle Scholar
  75. [75]
    Grenier, A.; Liu, H.; Wiaderek, K. M.; Lebens-Higgins, Z. W.; Borkiewicz, O. J.; Piper, L. F. J.; Chupas, P. J.; Chapman, K. W. Reaction heterogeneity in LiNi0.8Co0.15Al0.05O2 induced by surface layer. Chem. Mater. 2017, 29, 7345–7352.CrossRefGoogle Scholar
  76. [76]
    Wang, R.; Yu, X. Q.; Bai, J. M.; Li, H.; Huang, X. J.; Chen, L. Q.; Yang, X. Q. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin film and powder electrodes. J. Power Sources 2012, 218, 113–118.CrossRefGoogle Scholar
  77. [77]
    Gulbransen, E. A.; Andrew, K. F. The kinetics of the oxidation of cobalt. J. Electrochem. Soc. 1951, 98, 241–251.CrossRefGoogle Scholar
  78. [78]
    Railsback, J. G.; Johnston-Peck, A. C.; Wang, J. W.; Tracy, J. B. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles. ACS Nano 2010, 4, 1913–1920.CrossRefGoogle Scholar
  79. [79]
    Zhu, J.; Chen, G. Y. Single-crystal based studies for correlating the properties and high-voltage performance of Li[NixMnyCo1−xy]O2 cathodes. J. Mater. Chem. A 2019, 7, 5463–5474.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hyeseung Chung
    • 1
  • Antonin Grenier
    • 2
  • Ricky Huang
    • 1
  • Xuefeng Wang
    • 1
  • Zachary Lebens-Higgins
    • 3
  • Jean-Marie Doux
    • 1
  • Shawn Sallis
    • 4
  • Chengyu Song
    • 5
  • Peter Ercius
    • 5
  • Karena Chapman
    • 2
  • Louis F. J. Piper
    • 3
  • Hyung-Man Cho
    • 1
  • Minghao Zhang
    • 1
    Email author
  • Ying Shirley Meng
    • 1
    Email author
  1. 1.Department of NanoEngineeringUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Chemistry DepartmentStony Brook UniversityStony BrookUSA
  3. 3.Department of Physics, Applied Physics and AstronomyBinghamton UniversityBinghamtonUSA
  4. 4.Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations