Multifunctional core-shell-like nanoarchitectures for hybrid supercapacitors with high capacity and long-term cycling durability

  • S. Chandra Sekhar
  • Goli Nagaraju
  • Bhimanaboina Ramulu
  • Sk. Khaja Hussain
  • D. Narsimulu
  • Jae Su YuEmail author
Research Article


Transition metal oxide/hydroxide with multifunctional hierarchical nanostructures has attracted widespread attention in supercapacitors (SCs) because of their large accessible surface area, high electrochemical activity and superior redox chemistry. Herein, core-shell-like copper (Cu) hydroxide nanotube arrays grafted nickel aluminum layered double hydroxide nanosheets were facilely synthesized on porous Cu foam (CH NTAs@NiAl LDH NSs) for use as an efficient battery-type electrode in hybrid SCs. With the synergistic effects of NiAl LDH NSs on well-adhered CH NTAs/CF, the core-shell-like composite (prepared for 24 h) delivered a maximum areal capacity of 334.3 μAh/cm2 at a current density of 3 mA/cm2 in 2 M KOH electrolyte, which is comparatively higher than other samples synthesized at different growth times. Moreover, the core-shell-like CH NTAs@NiAl LDH NSs-24 demonstrated an outstanding cycling stability of 134.3% after 10,000 cycles. Utilizing high capacity and stability of CH NTAs@NiAl LDH NSs-24, a pouch-type hybrid SC was further assembled with core-shell-like composite as a positive electrode and reduced graphene oxide as a negative electrode with a filter paper as a separator in aqueous alkaline electrolyte. The hybrid SC showed a high areal capacity of 250 μAh/cm2 at 2 mA/cm2 with maximum areal energy and power densities of 181.9 μWh/cm2 and 24,991.5 μW/cm2, respectively. Successfully harvesting the solar energy via solar cell panel and subsequently delivering the stored energy to switching and proximity applications also demonstrated the real-time applicability of our hybrid SCs.


copper hydroxide layered double hydroxides core-shell hybrid supercapacitors energy density self-powered devices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (Nos. 2017R1A2B4011998 and 2018R1A6A1A03025708).

Supplementary material

12274_2019_2492_MOESM1_ESM.pdf (6 mb)
Multifunctional core-shell-like nanoarchitectures for hybrid supercapacitors with high capacity and long-term cycling durability


  1. [1]
    Guo, W.; Yu, C.; Li, S. F.; Wang, Z.; Yu, J. H.; Huang, H. W.; Qiu, J. S. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives. Nano Energy 2019, 57, 459–472.CrossRefGoogle Scholar
  2. [2]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  3. [3]
    Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.CrossRefGoogle Scholar
  4. [4]
    Nagaraju, G.; Chandra Sekhar, S.; Krishna Bharat, L.; Yu, J. S. Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors. ACS Nano 2017, 11, 10860–10874.CrossRefGoogle Scholar
  5. [5]
    Zhang, J. L.; Li, Y.; Zhang, Y.; Qian, X. Y.; Niu, R. C.; Hu, R. D.; Zhu, X. F.; Wang, X.; Zhu, J. W. The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: Towards flexible supercapacitors with high energy density and long service life. Nano Energy 2018, 43, 91–102.CrossRefGoogle Scholar
  6. [6]
    Lee, G.; Kim, D.; Kim, D.; Oh, S.; Yun, J.; Kim, J.; Lee, S. S.; Ha, J. S. Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte. Energy Environ. Sci. 2015, 8, 1764–1774.CrossRefGoogle Scholar
  7. [7]
    Yi, F.; Ren, H. Y.; Dai, K. R.; Wang, X. F.; Han, Y. Z.; Wang, K. X.; Li, K.; Guan, B. L.; Wang, J.; Tang, M. et al. Solar thermal-driven capacitance enhancement of supercapacitors. Energy Environ. Sci. 2018, 11, 2016–2024.CrossRefGoogle Scholar
  8. [8]
    Seo, D. H.; Han, Z. J.; Kumar, S.; Ostrikov, K. Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 2013, 3, 1316–1323.CrossRefGoogle Scholar
  9. [9]
    Xie, M. J.; Duan, S. Y.; Shen, Y.; Fang, K.; Wang, Y. Z.; Lin, M.; Guo, X. F. In-situ-grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor. ACS Energy Lett. 2016, 1, 814–819.CrossRefGoogle Scholar
  10. [10]
    Xiang, K.; Xu, Z. C.; Qu, T. T.; Tian, Z. F.; Zhang, Y.; Wang, Y. Z.; Xie, M. J.; Guo, X. K.; Ding, W. P.; Guo, X. F. Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances. Chem. Commun. 2017, 53, 12410–12413.CrossRefGoogle Scholar
  11. [11]
    Sun, G. Q.; Yang, H. S.; Zhang, G. F.; Gao, J.; Jin, X. T.; Zhao, Y.; Jiang, L.; Qu, L. T. A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 2018, 11, 3367–3374.CrossRefGoogle Scholar
  12. [12]
    Heo, Y. J.; Lee, J. W.; Son, Y. R.; Lee, J. H.; Yeo, C. S.; Lam, T. D.; Park, S. Y.; Park, S. J.; Sinh, L. H.; Shin, M. K. Large-scale conductive yarns based on twistable korean traditional paper (Hanji) for supercapacitor applications: Toward high-performance paper supercapacitors. Adv. Energy Mater. 2018, 8, 1801854.CrossRefGoogle Scholar
  13. [13]
    Le Comte, A.; Brousse, T.; Bélanger, D. New generation of hybrid carbon/Ni(OH)2 electrochemical capacitor using functionalized carbon electrode. J. Power Sources 2016, 326, 702–710.CrossRefGoogle Scholar
  14. [14]
    Li, J. E.; Wang, Y. W.; Xu, W. N.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X. Y.; Zhang, C. L.; Gu, X.; Hu, C. G. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 2019, 57, 379–387.CrossRefGoogle Scholar
  15. [15]
    Veerasubramani, G. K.; Krishnamoorthy, K.; Kim, S. J. Electrochemical performance of an asymmetric supercapacitor based on graphene and cobalt molybdate electrodes. RSC Adv. 2015, 5, 16319–16327.CrossRefGoogle Scholar
  16. [16]
    Chandra Sekhar, S.; Nagaraju, G.; Yu, J. S. High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material. Nano Energy 2018, 48, 81–92.CrossRefGoogle Scholar
  17. [17]
    Xie, M. J.; Xu, Z. C.; Duan, S. Y.; Tian, Z. F.; Zhang, Y.; Xiang, K.; Lin, M.; Guo, X. F.; Ding, W. P. Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 2018, 11, 216–224.CrossRefGoogle Scholar
  18. [18]
    Zhu, Y. F.; Huang, H. F.; Li, G. X.; Liang, X. Q.; Zhou, W. Z.; Guo, J.; Wei, W. L.; Tang, S. L. Graphene-anchored NiCoO2 nanoarrays as supercapacitor electrode for enhanced electrochemical performance. Electrochim. Acta 2017, 248, 562–569.CrossRefGoogle Scholar
  19. [19]
    Huang, L.; Chen, D. C.; Ding, Y.; Feng, S.; Wang, Z. L.; Liu, M. L. Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139.CrossRefGoogle Scholar
  20. [20]
    Huang, Y. X.; Yan, C.; Shi, X.; Zhi, W.; Li, Z. M.; Yan, Y. X.; Zhang, M. L.; Cao, G. Z. Ni0.85Co0.15WO4 nanosheet electrodes for supercapacitors with excellent electrical conductivity and capacitive performance. Nano Energy 2018, 48, 430–440.CrossRefGoogle Scholar
  21. [21]
    Nagaraju, G.; Ko, Y. H.; Yu, J. S. Self-assembled hierarchical β-cobalt hydroxide nanostructures on conductive textiles by one-step electrochemical deposition. CrystEngComm. 2014, 16, 11027–11034.CrossRefGoogle Scholar
  22. [22]
    Chen, H.; Zhang, F.; Fu, S.; Duan, X. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials. Adv. Mater. 2006, 18, 3089–3093.CrossRefGoogle Scholar
  23. [23]
    Béléké, A. B.; Mizuhata, M. Electrochemical properties of nickel-aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition. J. Power Sources 2010, 195, 7669–7676.CrossRefGoogle Scholar
  24. [24]
    Mandel, K.; Drenkova-Tuhtan, A.; Hutter, F.; Gellermann, C.; Steinmetz, H.; Sextl, G. Layered double hydroxide ion exchangers on superparamagnetic microparticles for recovery of phosphate from waste water. J. Mater. Chem. A 2013, 1, 1840–1848.CrossRefGoogle Scholar
  25. [25]
    Li, B. X.; He, J.; Evans, D. G.; Duan, X. Enteric-coated layered double hydroxides as a controlled release drug delivery system. Int. J. Pharm. 2004, 287, 89–95.CrossRefGoogle Scholar
  26. [26]
    Liu, Y. Y.; Teng, X.; Mi, Y. L.; Chen, Z. F. A new architecture design of Ni-Co LDH-based pseudocapacitors. J. Mater. Chem. A 2017, 5, 24407–24415.CrossRefGoogle Scholar
  27. [27]
    Heli, H.; Pishahang, J.; Amiri, H. B. Synthesis of hexagonal CoAl-layered double hydroxide nanoshales/carbon nanotubes composite for the nonenzymatic detection of hydrogen peroxide. J. Electroanal. Chem. 2016, 768, 134–144.CrossRefGoogle Scholar
  28. [28]
    Wang, F. F.; Sun, S. G.; Xu, Y. Q.; Wang, T.; Yu, R. J.; Li, H. J. High performance asymmetric supercapacitor based on cobalt nickle iron-layered double hydroxide/carbon nanofibres and activated carbon. Sci. Rep. 2017, 7, 4707.CrossRefGoogle Scholar
  29. [29]
    Zhang, L. J.; Hui, K. N.; Hui, K. S.; Lee, H. Facile synthesis of porous CoAl-layered double hydroxide/graphene composite with enhanced capacitive performance for supercapacitors. Electrochim. Acta 2015, 186, 522–529.CrossRefGoogle Scholar
  30. [30]
    Cheng, H. H.; Long, L.; Shu, D.; Wu, J. Q.; Gong, Y. B.; He, C.; Kang, Z. X.; Zou, X. P. The supercapacitive behavior and excellent cycle stability of graphene/MnO2 composite prepared by an electrostatic self-assembly process. Int. J. Hydrogen Energy 2014, 39, 16151–16161.CrossRefGoogle Scholar
  31. [31]
    Nagaraju, G.; Raju, G. S. R.; Ko, Y. H.; Yu, J. S. Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: A cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 2016, 8, 812–825.CrossRefGoogle Scholar
  32. [32]
    Huang, S.; Zhu, G. N.; Zhang, C.; Tjiu, W. W.; Xia, Y. Y.; Liu, T. X. Immobilization of Co-Al Layered double hydroxides on graphene oxide nanosheets: Growth mechanism and supercapacitor studies. ACS Appl. Mater. Interfaces 2012, 4, 2242–2249.CrossRefGoogle Scholar
  33. [33]
    Zhang, S. L.; Lum, C.; Pan, N. Enhanced performance of carbon/carbon supercapacitors upon graphene addition. Nanotechnol. Environ. Eng. 2017, 2, 9.CrossRefGoogle Scholar
  34. [34]
    Abushrenta, N.; Wu, X. C.; Wang, J. N.; Liu, J. F.; Sun, X. M. Hierarchical Co-based porous layered double hydroxide arrays derived via alkali etching for high-performance supercapacitors. Sci. Rep. 2015, 5, 13082.CrossRefGoogle Scholar
  35. [35]
    Sekhar, S. C.; Nagaraju, G.; Ramulu, B.; Yu, J. S. Hierarchically designed Ag@Ce6Mo10O39 marigold flower-like architectures: An efficient electrode material for hybrid supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 36976–36987.CrossRefGoogle Scholar
  36. [36]
    Chen, P. C.; Shen, G. Z.; Shi, Y.; Chen, H. T.; Zhou, C. W. Preparation and characterization of flexible asymmetric supercapacitors based on transitionmetal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403–4411.CrossRefGoogle Scholar
  37. [37]
    Nagaraju, G.; Cha, S. M.; Sekhar, S. C.; Yu, J. S. Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv. Energy Mater. 2017, 7, 1601362.CrossRefGoogle Scholar
  38. [38]
    Lu, Q. L.; Zhao, S. X.; Chen, C. K.; Wang, X.; Deng, Y. F.; Nan, C. W. A novel pseudocapacitance mechanism of elm seed-like mesoporous MoO3-x nanosheets as electrodes for supercapacitors. J. Mater. Chem. A 2016, 4, 14560–14566.CrossRefGoogle Scholar
  39. [39]
    Nagaraju, G.; Ko, Y. H.; Cha, S. M.; Im, S. H.; Yu, J. S. A facile one-step approach to hierarchically assembled core-shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage. Nano Res. 2016, 9, 1507–1522.CrossRefGoogle Scholar
  40. [40]
    Veerasubramani, G. K.; Krishnamoorthy, K.; Kim, S. J. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J. Power Sources 2016, 306, 378–386.CrossRefGoogle Scholar
  41. [41]
    Veerasubramani, G. K.; Chandrasekhar, A.; Sudhakaran, M. S. P.; Mok, Y. S.; Kim, S. J. Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core-shell nanostructures assembled with honeycomb-like porous carbon. J. Mater. Chem. A 2017, 5, 11100–11113.CrossRefGoogle Scholar
  42. [42]
    Wang, X.; Sumboja, A.; Lin, M. F.; Yan, J.; Lee, P. S. Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: A hybrid material for an asymmetric supercapacitor device. Nanoscale 2012, 4, 7266–7272.CrossRefGoogle Scholar
  43. [43]
    Babu, I. M.; Purushothaman, K. K.; Muralidharan, G. Ag3O4 grafted NiO nanosheets for high performance supercapacitors. J. Mater. Chem. A 2015, 3, 420–427.CrossRefGoogle Scholar
  44. [44]
    Xu, K. B.; Li, W. Y.; Liu, Q.; Li, B.; Liu, X. J.; An, L.; Chen, Z. G.; Zou, R. J.; Hu, J. Q. Hierarchical mesoporous NiCo2O4@MnO2 core-shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 4795–4802.CrossRefGoogle Scholar
  45. [45]
    Kong, W.; Lu, C. C.; Zhang, W.; Pu, J.; Wang, Z. H. Homogeneous core-shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J. Mater. Chem. A 2015, 3, 12452–12460.CrossRefGoogle Scholar
  46. [46]
    Luan, F.; Wang, G. M.; Ling, Y. C.; Lu, X. H.; Wang, H. Y.; Tong, Y. X.; Liu, X. X.; Li, Y. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 2013, 5, 7984–7990.CrossRefGoogle Scholar
  47. [47]
    Sekhar, S. C.; Nagaraju, G.; Yu, J. S. Conductive silver nanowires-fenced carbon cloth fibers-supported layered double hydroxide nanosheets as a flexible and binder-free electrode for high-performance asymmetric supercapacitors. Nano Energy 2017, 36, 58–67.CrossRefGoogle Scholar
  48. [48]
    Yang, M. Y.; Cheng, H.; Gu, Y. Y.; Sun, Z. F.; Hu, J.; Cao, L. J.; Lv, F. C.; Li, M. C.; Wang, W. X.; Wang, Z. Y. et al. Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Res. 2015, 8, 2744–2754.CrossRefGoogle Scholar
  49. [49]
    Nagaraju, G.; Sekhar, S. C.; Ramulu, B.; Bharat, L. K.; Raju, G. S. R.; Han, Y. K.; Yu, J. S. Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: A sunlightdriven rechargeable energy storage system to portable electronics. Nano Energy 2018, 50, 448–461.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. Chandra Sekhar
    • 1
  • Goli Nagaraju
    • 1
    • 2
  • Bhimanaboina Ramulu
    • 1
  • Sk. Khaja Hussain
    • 1
  • D. Narsimulu
    • 1
  • Jae Su Yu
    • 1
    Email author
  1. 1.Department of Electronic Engineering, Institute for Wearable Convergence ElectronicsKyung Hee UniversityGyeonggi-doRepublic of Korea
  2. 2.Department of Chemical Engineering, College of EngineeringKyung Hee UniversityGyeonggi-doRepublic of Korea

Personalised recommendations