Advertisement

Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells

  • Qiqi Zhang
  • Jialong Liu
  • Tianyu XiaEmail author
  • Jie Qi
  • Haochang Lyu
  • Baoyuan Luo
  • Rongming Wang
  • Yizhong Guo
  • Lihua Wang
  • Shouguo WangEmail author
Research Article
  • 23 Downloads

Abstract

Pt-based magnetic nanocatalysts are one of the most suitable candidates for electrocatalytic materials due to their high electrochemistry activity and retrievability. Unfortunately, the inferior durability prevents them from being scaled-up, limiting their commercial applications. Herein, an antiferromagnetic element Mn was introduced into PtCo nanostructured alloy to synthesize uniform Mn-PtCo truncated octahedral nanoparticles (TONPs) by one-pot method. Our results show that Mn can tune the blocking temperature of Mn-PtCo TONPs due to its antiferromagnetism. At low temperatures, Mn-PtCo TONPs are ferromagnetic, and the coercivity increases gradually with increasing Mn contents. At room temperature, the Mn-PtCo TONPs display superparamagnetic behavior, which is greatly helpful for industrial recycling. Mn doping can not only modify the electronic structure of PtCo TONPs but also enhance electrocatalytic performance for methanol oxidation reaction. The maximum specific activity of Mn-PtCo-3 reaches 8.1 A·m-2, 3.6 times of commercial Pt/C (2.2 A·m-2) and 1.4 times of PtCo TONPs (5.6 A·m-2), respectively. The mass activity decreases by only 30% after 2,000 cycles, while it is 45% and 99% (nearly inactive) for PtCo TONPs and commercial Pt/C catalysts, respectively.

Keywords

Mn-PtCo truncated octahedral nanoparticles antiferromagnetic element magnetic properties electrocatalytic performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation (Nos. 51625101, 51431009, 51801188, and 51701202), the State Key Development Program for Basic Research of China (No. 2015CB921401), the Fundamental Research Funds for the Central University Universities of China (No. FRF-TP-16-001C2), the China Postdoctoral Science Foundation (No. 2018M632792), Startup Research Fund of Zhengzhou University (No. 32210815), and Bejing Natural Science Foundation (No. Z180014).

Supplementary material

12274_2019_2479_MOESM1_ESM.pdf (6.5 mb)
Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells

References

  1. [1]
    Chung, D. Y.; Yoo, J. M.; Sung, Y. E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts. Adv. Mater. 2018, 30, 1704123.CrossRefGoogle Scholar
  2. [2]
    Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526–8544.CrossRefGoogle Scholar
  3. [2]
    Liu, J. L.; Xia, T. Y.; Wang, S. G.; Yang, G.; Dong, B. W.; Wang, C.; Ma, Q. D.; Sun, Y.; Wang, R. M. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties. Nanoscale 2016, 8, 11432–11440.CrossRefGoogle Scholar
  4. [4]
    Xue, S. F.; Deng, W. T.; Yang, F.; Yang, J. L.; Amiinu, I. S.; He, D. P.; Tang, H. L.; Mu, S. C. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 2018, 8, 7578–7584.CrossRefGoogle Scholar
  5. [5]
    Gauthier, Y.; Schmid, M.; Padovan, S.; Lundgren, E.; Buš, V.; Kresse, G.; Redinger, J.; Varga, P. Adsorption sites and ligand effect for CO on an alloy surface: A direct view. Phy. Rev. Lett. 2001, 87, 036103.CrossRefGoogle Scholar
  6. [6]
    Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phy. Rev. Lett. 1998, 81, 2819–2822.CrossRefGoogle Scholar
  7. [7]
    Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.CrossRefGoogle Scholar
  8. [8]
    Kaur, M.; Johnson, A.; Tian, G. X.; Jiang, W. L.; Rao, L. F.; Paszczynski, A.; Qiang, Y. Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel. Nano Energy 2013, 2, 124–132.CrossRefGoogle Scholar
  9. [9]
    Cai, Z.; Kuang, Y.; Qi, X. H.; Wang, P.; Zhang, Y.; Zhang, Z. C.; Sun, X. M. Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity. J. Mater. Chem. A 2015, 3, 1182–1187.CrossRefGoogle Scholar
  10. [10]
    Guerrero-Ortega, L. P. A; Manzo-Robledo, A.; Ramírez-Meneses, E. R.; Mateos-Santiago, J.; Lartundo-Rojas, L.; Garibay-Febles, V. Methanol electro-oxidation reaction at the interface of (bi)-metallic (PtNi) synthesized nanoparticles supported on carbon Vulcan. Int. J. Hydrogen Energy 2018, 43, 6117–6130.CrossRefGoogle Scholar
  11. [11]
    Xia, T. Y.; Liu, J. L.; Wang, S. G.; Wang, C.; Sun, Y.; Wang, R. M. Nanomagnetic CoPt truncated octahedrons: Facile synthesis, superior electrocatalytic activity and stability for methanol oxidation. Sci. China Mater. 2017, 60, 57–67.CrossRefGoogle Scholar
  12. [12]
    Xie, J.; Zhang, Q. H.; Gu, L.; Xu, S.; Wang, P.; Liu, J. G.; Ding, Y.; Yao, Y. F.; Nan, C. W.; Zhao, M. et al. Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy 2016, 21, 247–257.CrossRefGoogle Scholar
  13. [13]
    Zhu, H.; Cai, Y. Z.; Wang, F. H.; Gao, P.; Cao, J. D. Scalable preparation of the chemically ordered Pt-Fe-Au Nanocatalysts with high catalytic reactivity and stability for oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 22156–22166.CrossRefGoogle Scholar
  14. [14]
    Guedes-Sobrinho, D.; Nomiyama, R. K.; Chaves, A. S.; Piotrowski, M. J.; Da Silva, J. L. F. Structure, electronic, and magnetic properties of binary PtnTM55-n (TM = Fe, Co, Ni, Cu, Zn) nanoclusters: A density functional theory investigation. J. Phys. Chem. C 2015, 119, 15669–15679.CrossRefGoogle Scholar
  15. [15]
    Park, J. I.; Kim, M. G.; Jun, Y. W.; Lee, J. S.; Lee, W. R.; Cheon, J. Characterization of superparamagnetic “core-shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys. J. Am. Chem. Soc. 2004, 126, 9072–9078.CrossRefGoogle Scholar
  16. [16]
    Arán-Ais, R. M.; Dionigi, F.; Merzdorf, T.; Gocyla, M.; Heggen, M.; Dunin-Borkowski R. E.; Gliech, M.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. et al. Elemental anisotropic growth and atomic-scale structure of shape-controlled octahedral Pt-Ni-Co alloy nanocatalysts. Nano Lett. 2015, 15, 7473–7480.CrossRefGoogle Scholar
  17. [17]
    Wang, Y. N.; Liu, Q.; Sun, Y. H.; Wang, R. M. Magnetic field modulated SERS enhancement of CoPt hollow nanoparticles with sizes below 10 nm. Nanoscale 2018, 10, 12650–12656.CrossRefGoogle Scholar
  18. [18]
    Kang, J. X.; Chen, T. W.; Zhang, D. F.; Guo, L. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation. Nano Energy 2016, 23, 145–152.CrossRefGoogle Scholar
  19. [19]
    Tang, M.; Luo, S. P.; Wang, K.; Du, H. Y.; Sriphathoorat R.; Shen P. K. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res. 2018, 11, 4786–4795.CrossRefGoogle Scholar
  20. [20]
    Lim, J.; Shin, H.; Kim, M. J.; Lee, H.; Lee, K. S.; Kwon, Y.; Song, D.; Oh, S.; Kim, H.; Cho, E. Ga-doped Pt-Ni octahedral nanoparticles as a highly active and durable electrocatalyst for oxygen reduction reaction. Nano Lett. 2018, 18, 2450–2458.CrossRefGoogle Scholar
  21. [21]
    Wu, Y. J.; Zhao, Y. G.; Liu, J. J.; Wang, F. Adding refractory 5d transition metal W into PtCo system: An advanced ternary alloy for efficient oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 10700–10709.CrossRefGoogle Scholar
  22. [22]
    Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.CrossRefGoogle Scholar
  23. [23]
    Chen, L. X.; Zhu, J.; Xuan, C. J.; Xiao, W. P.; Xia, K. D.; Xia, W. W.; Lai, C. L.; Xin, H. L.; Wang, D. L. Effects of crystal phase and composition on structurally ordered Pt-Co-Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. J. Mater. Chem. A 2018, 6, 5848–5855.CrossRefGoogle Scholar
  24. [24]
    Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240–10246.CrossRefGoogle Scholar
  25. [25]
    Tian, X. L.; Luo, J. M.; Nan, H. X.; Zou, H. B.; Chen, R.; Shu, T.; Li, X. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. et al. Transition metal nitride coated with atomic layers of Pt as a Low-Cost, highly stable electrocatalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 1575–1583.CrossRefGoogle Scholar
  26. [26]
    Zhang, Z. J.; Chen, X. Y.; Zhang, X. F.; Shi, C. W. Synthesis and magnetic properties of nickel and cobalt nanoparticles obtained in DMF solution. Solid State Commun. 2006, 139, 403–405.CrossRefGoogle Scholar
  27. [27]
    Wang, D. S., Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.CrossRefGoogle Scholar
  28. [28]
    Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502–1506.CrossRefGoogle Scholar
  29. [29]
    Barmparis, G. D.; Remediakis, I. N. Dependence on CO adsorption of the shapes of multifaceted gold nanoparticles: A density functional theory. Phys. Rev. B 2012, 86, 085457.CrossRefGoogle Scholar
  30. [30]
    Xia, T. Y.; Liu, J. L.; Wang, S. G.; Wang, C.; Sun, Y.; Gu, L.; Wang, R. M. Enhanced catalytic activities of NiPt truncated octahedral nanoparticles toward ethylene glycol oxidation and oxygen reduction in alkaline electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 10841–10849.CrossRefGoogle Scholar
  31. [31]
    Zhu, K.; Ju, Y. M.; Xu, J. J.; Yang, Z. Y.; Gao, S.; Hou, Y. L. Magnetic nanomaterials: Chemical design, synthesis, and potential applications. Acc. Chem. Res. 2018, 51, 404–413.CrossRefGoogle Scholar
  32. [32]
    Dai, J. T.; Du, Y. K.; Wang, F. W.; Yang, P. PtCo/Au nanocomposite: Synthesis, characterization, and magnetic properties. Physica E 2007, 39, 271–276.CrossRefGoogle Scholar
  33. [33]
    Du, X. Y.; Inokuchi, M.; Toshima, N. Preparation and characterization of Co-Pt bimetallic magnetic nanoparticles. J. Magn. Magn. Mater. 2006, 299, 21–28.CrossRefGoogle Scholar
  34. [34]
    Fan, H. S.; Cheng, M.; Wang, L.; Song, Y. J.; Cui, Y. M.; Wang, R. M. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy 2018, 48, 1–9.CrossRefGoogle Scholar
  35. [35]
    Lv, H. F.; Peng, T.; Wu, P.; Pan, M.; Mu, S. C. Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance. J. Mater. Chem. 2012, 22, 9155–9160.CrossRefGoogle Scholar
  36. [36]
    Cohen, J. L.; Volpe, D. J.; Abruña, H. D. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys. Chem. Chem. Phys. 2007, 9, 49–77.CrossRefGoogle Scholar
  37. [37]
    Ding, L. X.; Wang, A. L.; Li, G. R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 2012, 134, 5730–5733.CrossRefGoogle Scholar
  38. [38]
    Rodriguez, J. A., Goodman, D. W. The nature of the metal-metal bond in bimetallic surfaces. Science 1992, 257, 897–903.CrossRefGoogle Scholar
  39. [39]
    Lokanathan, M.; Patil, I. M.; Navaneethan, M.; Parey, V.; Thapa, R.; Kakade, B. Designing of stable and highly efficient ordered Pt2CoNi ternary alloy electrocatalyst: The origin of dioxygen reduction activity. Nano Energy 2018, 43, 219–227.CrossRefGoogle Scholar
  40. [40]
    Vidakovi, T.; Christov, M.; Sundmacher, K. The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim. Acta 2007, 52, 5606–5613.CrossRefGoogle Scholar
  41. [41]
    Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J. Phys. Chem. B 2006, 110, 23489–23496.CrossRefGoogle Scholar
  42. [42]
    Zhang, Z. C.; Tian, X. C.; Zhang, B. W.; Huang, L.; Zhu, F. C.; Qu, X. M.; Liu, L.; Liu, S.; Jiang, Y. X.; Sun, S. G. Engineering phase and surface composition of Pt3Co nanocatalysts: A strategy for enhancing CO tolerance. Nano Energy 2017, 34, 224–232.CrossRefGoogle Scholar
  43. [43]
    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metaldoped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1233.CrossRefGoogle Scholar
  44. [44]
    Liu, J. L.; Liu, W.; Sun, Q.; Wang, S. G.; Sun, K.; Schwank, J.; Wang, R. M. In situ tracing of atom migration in Pt/NiPt hollow spheres during catalysis of CO oxidation. Chem. Commun. 2014, 50, 1804–1807.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qiqi Zhang
    • 1
  • Jialong Liu
    • 2
  • Tianyu Xia
    • 3
    Email author
  • Jie Qi
    • 1
  • Haochang Lyu
    • 1
  • Baoyuan Luo
    • 1
  • Rongming Wang
    • 4
  • Yizhong Guo
    • 5
  • Lihua Wang
    • 5
  • Shouguo Wang
    • 1
    • 4
    Email author
  1. 1.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Material Physics of Ministry of Education, School of Physics and EngineeringZhengzhou UniversityZhengzhouChina
  4. 4.Institute for multidisciplinary InnovationUniversity of Science and Technology BeijingBeijingChina
  5. 5.Beijng Key Lab of Microstructure and Property of Advanced MaterialsBeijing University of TechnologyBeijingChina

Personalised recommendations