Advertisement

Nano Research

, Volume 12, Issue 9, pp 2364–2372 | Cite as

Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111)

  • Anthony Curto
  • Zhaozong Sun
  • Jonathan Rodríguez-Fernández
  • Liang Zhang
  • Ayush Parikh
  • Ting Tan
  • Jeppe V. Lauritsen
  • Aleksandra VojvodicEmail author
Research Article

Abstract

An integrated approach combining density functional theory (DFT) calculations and atomic resolution scanning tunneling microscopy (STM) is used to study well-defined iron-doped cobalt oxide nanoislands supported on Au(111). The focus is on the structure and distribution of Fe dopants within these nanoislands of CoO as a function of Fe to Co ratio. The DFT and STM results agree strongly and complement each other to allow for a more complete understanding of the dopant structure trends on the nanoscale. Using Fe as a marker, we first find that the stacking sequence of the moiré structure of the host cobalt oxide nanoislands can be identified unambiguously through a combination of DFT and STM. Using the distinct contrast of the embedded Fe dopant atoms as observed with atom-resolved STM, we find correlations between Fe dopant position and the CoO/Au(111) moiré pattern at varying Fe dopant densities. Formation of Fe-dopant clusters within the nanoislands is investigated in detail through DFT and found to agree with the dopant patterns observed in STM. We find that the structural effects of Fe dopants throughout the nanoislands with the basal planes and the two types of edges—the oxygen and metal edges—have different nature. Both DFT calculations and STM images show a strong preference for Fe dopants to be located directly on or near the oxygen edge of the nanoislands as opposed to being directly on or near the metal edge. Taken together, our results illustrate that Fe dopant incorporation and distribution within CoO nanoislands are highly anisotropic and governed by both the moiré structure of the basal planes as well as nano-size effects present at the under-coordinated edges of different local geometry and chemistries.

Keywords

scanning tunneling microscopy (STM) density functional theory (DFT) cobalt oxide transition metal oxides mixed transition metal oxides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

A. V. acknowledges the Canadian Institute for Advanced Research (CIFAR) for support through the Bio-inspired Solar Energy Program. J. V. L. and J. R.-F. acknowledge the VILLUM foundation. Z. Z. S. would like to acknowledge financial support from the China Scholarship Council (CSC). L. Z., T. T., and A. V. would like to acknowledge the use of the computer time allocation at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XSEDE) supported through National Science Foundation Energy under Award Number CHE160084.

Supplementary material

12274_2019_2474_MOESM1_ESM.pdf (5.5 mb)
Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111)

References

  1. [1]
    Rao, C. N. R. Transition metal oxides. Annu. Rev. Phys. Chem. 1989, 40, 291–326.CrossRefGoogle Scholar
  2. [2]
    Barcaro, G.; Fortunelli, A. 2D oxides on metal materials: Concepts, status, and perspectives. Phys. Chem. Chem. Phys. 2019, 21, 11510–11536.CrossRefGoogle Scholar
  3. [3]
    Galatsis, K.; Li, Y. X.; Wlodarski, W.; Comini, E.; Sberveglieri, G.; Cantalini, C.; Santucci, S.; Passacantando, M. Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel gas sensors. Sen. Actuators B: Chem. 2002, 83, 276–280.CrossRefGoogle Scholar
  4. [4]
    Netzer, F. P. “Small and beautiful”—The novel structures and phases of nano-oxides. Surf. Sci. 2010, 604, 485–489.CrossRefGoogle Scholar
  5. [5]
    Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.CrossRefGoogle Scholar
  6. [6]
    Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.CrossRefGoogle Scholar
  7. [7]
    Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.CrossRefGoogle Scholar
  8. [8]
    Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.CrossRefGoogle Scholar
  9. [9]
    Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.CrossRefGoogle Scholar
  10. [10]
    Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120–14136.CrossRefGoogle Scholar
  11. [11]
    Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.CrossRefGoogle Scholar
  12. [12]
    Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B: Chem. 2007, 121, 18–35.CrossRefGoogle Scholar
  13. [13]
    Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.CrossRefGoogle Scholar
  14. [14]
    Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.CrossRefGoogle Scholar
  15. [15]
    Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.CrossRefGoogle Scholar
  16. [16]
    Yu, J.; Li, Q. Q.; Li, Y.; Xu, C. Y.; Zhen, L.; Dravid, V. P.; Wu, J. S. Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 2016, 26, 7644–7651.CrossRefGoogle Scholar
  17. [17]
    Du, P. W.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy Environ. Sci. 2012, 5, 6012–6021.CrossRefGoogle Scholar
  18. [18]
    Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.CrossRefGoogle Scholar
  19. [19]
    Li, N.; Bediako, D. K.; Hadt, R. G.; Hayes, D.; Kempa, T. J.; von Cube, F.; Bell, D. C.; Chen, L. X.; Nocera, D. G. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proc. Natl. Acad. Sci. USA 2017, 114, 1486–1491.CrossRefGoogle Scholar
  20. [20]
    Batchellor, A. S.; Boettcher, S. W. Pulse-electrodeposited Ni-Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catal. 2015, 5, 6680–6689.CrossRefGoogle Scholar
  21. [21]
    Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.CrossRefGoogle Scholar
  22. [22]
    Deng, X. H.; Tüysüz, H. Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges. ACS Catal. 2014, 4, 3701–3714.CrossRefGoogle Scholar
  23. [23]
    Smith, R. D. L.; Pasquini, C.; Loos, S.; Chernev, P.; Klingan, K.; Kubella, P.; Mohammadi, M. R.; Gonzalez-Flores, D.; Dau, H. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nat. Commun. 2017, 8, 2022.CrossRefGoogle Scholar
  24. [24]
    Yang, F. K.; Sliozberg, K.; Sinev, I.; Antoni, H.; Bähr, A.; Ollegott, K.; Xia, W.; Masa, J.; Grünert, W.; Cuenya, B. R. et al. Synergistic effect of cobalt and iron in layered double hydroxide catalysts for the oxygen evolution reaction. ChemSusChem 2017, 10, 156–165.CrossRefGoogle Scholar
  25. [25]
    Heinz, K.; Müller, S.; Hammer, L. Crystallography of ultrathin iron, cobalt and nickel films grown epitaxially on copper. J. Phys.: Condens. Matter 1999, 11, 9437–9454.Google Scholar
  26. [26]
    Mountapmbeme Kouotou, P.; Vieker, H.; Tian, Z. Y.; Tchoua Ngamou, P. H.; El Kasmi, A.; Beyer, A.; Gölzhäuser, A.; Kohse-Höinghaus, K. Structure-activity relation of spinel-type Co-Fe oxides for low-temperature CO oxidation. Catal. Sci. Technol. 2014, 4, 3359–3367.CrossRefGoogle Scholar
  27. [27]
    Haneda, M.; Kawaguchi, Y.; Towata, A. CoOx-FeOx composite oxide prepared by hydrothermal method as a highly active catalyst for low-temperature CO oxidation. J. Ceram. Soc. Jpn. 2017, 125, 135–140.CrossRefGoogle Scholar
  28. [28]
    Enman, L. J.; Burke Stevens, M.; Dahan, M. H.; Nellist, M. R.; Caspary Toroker, M.; Boettcher, S. W. Operando X-ray absorption spectroscopy shows iron oxidation is concurrent with oxygen evolution in cobalt-iron (oxy)hydroxide electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 12840–12844.CrossRefGoogle Scholar
  29. [29]
    Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.CrossRefGoogle Scholar
  30. [30]
    Walton, A. S.; Lauritsen, J. V.; Topsøe, H.; Besenbacher, F. MoS2 nanoparticle morphologies in hydrodesulfurization catalysis studied by scanning tunneling microscopy. J. Catal. 2013, 308, 306–318.CrossRefGoogle Scholar
  31. [31]
    Li, H. S.; Wang, S. S.; Sawada, H.; Han, G. G. D.; Samuels, T.; Allen, C. S.; Kirkland, A. I.; Grossman, J. C.; Warner, J. H. Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2. IitACS Nano 2017, 11, 3392–3403.Google Scholar
  32. [32]
    Li, D.; Niu, Y.; Zhao, H. M.; Liang, C. J.; He, Z. Q. Electronic and magnetic properties of 3D-metal trioxides superhalogen cluster-doped monolayer MoS2: A first-principles study. Phys. Lett. A 2014, 378, 1651–1656.CrossRefGoogle Scholar
  33. [33]
    Zuriaga-Monroy, C.; Martínez-Magadán, J. M.; Ramos, E.; Gómez-Balderas, R. A DFT study of the electronic structure of cobalt and nickel mono-substituted MoS2 triangular nanosized clusters. J. Mol. Catal. A: Chem. 2009, 313, 49–54.CrossRefGoogle Scholar
  34. [34]
    Lauritsen, J. V.; Kibsgaard, J.; Olesen, G. H.; Moses, P. G.; Hinnemann, B.; Helveg, S.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Lægsgaard, E. et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 2007, 249, 220–233.CrossRefGoogle Scholar
  35. [35]
    Robertson, A. W.; Lin, Y. C.; Wang, S. S.; Sawada, H.; Allen, C. S.; Chen, Q.; Lee, S.; Lee, G. D.; Lee, J.; Han, S. et al. Atomic structure and spectroscopy of single metal (Cr, V) substitutional dopants in monolayer MoS2. ACS Nano 2016, 10, 10227–10236.CrossRefGoogle Scholar
  36. [36]
    Morales, E. H.; He, Y. B.; Vinnichenko, M.; Delley, B.; Diebold, U. Surface structure of Sn-doped In2O3 (111) thin films by STM. New J. Phys. 2008, 10, 125030.CrossRefGoogle Scholar
  37. [37]
    Myrach, P.; Nilius, N.; Levchenko, S. V.; Gonchar, A.; Risse, T.; Dinse, K. P.; Boatner, L. A.; Frandsen, W.; Horn, R.; Freund, H. J. et al. Temperature-dependent morphology, magnetic and optical properties of Li-doped MgO. ChemCatChem 2010, 2, 854–862.CrossRefGoogle Scholar
  38. [38]
    Cui, Y.; Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Freund, H. J.; Nilius, N. Surface defects and their impact on the electronic structure of Mo-doped CaO films: An STM and DFT study. Phys. Chem. Chem. Phys. 2014, 16, 12764–12772.CrossRefGoogle Scholar
  39. [39]
    Walsh, A.; Catlow, C. R. A. Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory. J. Mater. Chem. 2010, 20, 10438–10444.CrossRefGoogle Scholar
  40. [40]
    Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.CrossRefGoogle Scholar
  41. [41]
    Chen, H.; Liu, Y.; Yang, F.; Wei, M. M.; Zhao, X. F.; Ning, Y. X.; Liu, Q. F.; Zhang, Y.; Fu, Q.; Bao, X. H. Active phase of FeOx/Pt catalysts in low-temperature CO oxidation and preferential oxidation of CO reaction. J. Phys. Chem. C 2017, 121, 10398–10405.CrossRefGoogle Scholar
  42. [42]
    Giordano, L.; Lewandowski, M.; Groot, I. M. N.; Sun, Y. N.; Goniakowski, J.; Noguera, C.; Shaikhutdinov, S.; Pacchioni, G.; Freund, H. J. Oxygen-induced transformations of an FeO(111) film on Pt(111): A combined DFT and STM study. J. Phys. Chem. C 2010, 11 4, 21504–21509.CrossRefGoogle Scholar
  43. [43]
    Zhang, K.; Li, L. F.; Shaikhutdinov, S.; Freund, H. J. Carbon monoxide oxidation on metal-supported monolayer oxide films: Establishing which interface is active. Angew. Chem., Int. Ed. 2018, 57, 1261–1265.CrossRefGoogle Scholar
  44. [44]
    Sun, Y. N.; Qin, Z. H.; Lewandowski, M.; Carrasco, E.; Sterrer, M.; Shaikhutdinov, S.; Freund, H. J. Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J. Catal. 2009, 266, 359–368.CrossRefGoogle Scholar
  45. [45]
    Merte, L. R.; Knudsen, J.; Eichhorn, F. M.; Porsgaard, S.; Zeuthen, H.; Grabow, L. C.; Lægsgaard, E.; Bluhm, H.; Salmeron, M.; Mavrikakis, M. et al. CO-induced embedding of Pt adatoms in a partially reduced FeOx film on Pt(111). J. Am. Chem. Soc. 2011, 133, 10692–10695.CrossRefGoogle Scholar
  46. [46]
    Li, M.; Altman, E. I. Shape, morphology, and phase transitions during Co oxide growth on Au(111). J. Phys. Chem. C 2014, 118, 12706–12716.CrossRefGoogle Scholar
  47. [47]
    Fester, J.; Sun, Z. Z.; Rodríguez-Fernández, J.; Walton, A.; Lauritsen, J. V. Phase transitions of cobalt oxide bilayers on Au(111) and Pt(111): The role of edge sites and substrate interactions. J. Phys. Chem. B 2018, 122, 561–571.CrossRefGoogle Scholar
  48. [48]
    Walton, A. S.; Fester, J.; Bajdich, M.; Arman, M. A.; Osiecki, J.; Knudsen, J.; Vojvodic, A.; Lauritsen, J. V. Interface controlled oxidation states in layered cobalt oxide nanoislands on gold. ACS Nano 2015, 9, 2445–2453.CrossRefGoogle Scholar
  49. [49]
    Fester, J.; García-Melchor, M.; Walton, A. S.; Bajdich, M.; Li, Z.; Lammich, L.; Vojvodic, A.; Lauritsen, J. V. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nat. Commun. 2017, 8, 14169.CrossRefGoogle Scholar
  50. [50]
    Fester, J.; Bajdich, M.; Walton, A. S.; Sun, Z.; Plessow, P. N.; Vojvodic, A.; Lauritsen, J. V. Comparative analysis of cobalt oxide nanoisland stability and edge structures on three related noble metal surfaces: Au(111), Pt(111) and Ag(111). To p. Catal. 2017, 60, 503–512.CrossRefGoogle Scholar
  51. [51]
    Fester, J.; Makoveev, A.; Grumelli, D.; Gutzler, R.; Sun, Z. Z.; Rodríguez-Fernández, J.; Kern, K.; Lauritsen, J. V. The structure of the cobalt oxide/Au catalyst interface in electrochemical water splitting. Angew. Chem., Int. Ed. 2018, 57, 11893–11897.CrossRefGoogle Scholar
  52. [52]
    Reticcioli, M.; Sokolović, I.; Schmid, M.; Diebold, U.; Setvin, M.; Franchini, C. Interplay between adsorbates and polarons: CO on rutile TiO2(110). Phys. Rev. Lett. 2019, 122, 016805.CrossRefGoogle Scholar
  53. [53]
    Meier, M.; Hulva, J.; Jakub, Z.; Pavelec, J.; Setvin, M.; Bliem, R.; Schmid, M.; Diebold, U.; Franchini, C.; Parkinson, G. S. Water agglomerates on Fe3O4(001). Proc. Natl. Acad. Sci. USA 2018, 115, E5642–E5650.CrossRefGoogle Scholar
  54. [54]
    Rodríguez-Fernández, J.; Sun, Z. Z.; Zhang, L.; Tan, T.; Curto, A.; Fester, J.; Vojvodic, A.; Lauritsen, J. V. Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111). J. Chem. Phys. 2019, 150, 041731.CrossRefGoogle Scholar
  55. [55]
    Giordano, L.; Pacchioni, G.; Goniakowski, J.; Nilius, N.; Rienks, E. D. L.; Freund, H. J. Interplay between structural, magnetic, and electronic properties in a FeO/Pt (111) ultrathin film. Phys. Rev. B 2007, 76, 075416.CrossRefGoogle Scholar
  56. [56]
    Cullen, W. G.; First, P. N. Island shapes and intermixing for submonolayer nickel on Au(111). Surf. Sci. 1999, 420, 53–64.CrossRefGoogle Scholar
  57. [57]
    Voloshina, E. N.; Fertitta, E.; Garhofer, A.; Mittendorfer, F.; Fonin, M.; Thissen, A.; Dedkov, Y. S. Electronic structure and imaging contrast of graphene moiré on metals. Sci. Rep. 2013, 3, 1072.CrossRefGoogle Scholar
  58. [58]
    Bruix, A.; Miwa, J. A.; Hauptmann, N.; Wegner, D.; Ulstrup, S.; Grønborg, S. S.; Sanders, C. E.; Dendzik, M.; Grubišić Čabo, A.; Bianchi, M. et al. Single-layer MoS2 on Au(111): Band gap renormalization and substrate interaction. Phys. Rev. B 2016, 93, 165422.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anthony Curto
    • 1
  • Zhaozong Sun
    • 2
  • Jonathan Rodríguez-Fernández
    • 2
  • Liang Zhang
    • 1
  • Ayush Parikh
    • 1
  • Ting Tan
    • 1
  • Jeppe V. Lauritsen
    • 2
  • Aleksandra Vojvodic
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark

Personalised recommendations