Advertisement

High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity

Abstract

The development of wires and cables that can tolerate extremely high temperatures will be very important for probing extreme environments, such as in solar exploration, fire disasters, high-temperature materials processing, aeronautics and astronautics. In this paper, a lightweight I high-temperature coaxial h-boron nitride (BN)/carbon nanotube (CNT) wire is synthesized by the chemical vapor deposition (CVD) epitaxial growth of h-BN on CNT yarn. The epitaxially grown h-BN acts as both an insulating material and a jacket that protects against oxidation. It has been shown that the thermionic electron emission (1,200 K) and thermally activated conductivity (1,000 K) are two principal mechanisms I for insulation failure of h-BN at high temperatures. The thermionic emission of h-BN can provide the work function of h-BN, which ranges from 4.22 to 4.61 eV in the temperature range of 1,306-1,787 K. The change in the resistivity of h-BN with temperature follows the ohmic conduction model of an insulator, and it can provide the "electron activation energy" (the energy from the Fermi level to the conduction band of h-BN), which ranges from 2.79 to 3.08 eV, corresponding to a band gap for h-BN ranging from 5.6 to 6.2 eV. However, since the leakage current is very I small, both phenomena have no obvious influence on the signal transmission at the working temperature. This lightweight coaxial h-BN/CNT wire can tolerate 1,200 °C in air and can transmit electrical signals as normal. It is hoped that this lightweight high-temperature wire will open up new possibilities for a wide range of applications in extreme high-temperature conditions.

References

  1. [1]

    Garner, R. Parker Solar Probe [Online], https://doi.org/www.nasa.gov/content/goddard/parker-solar-probe (accessed Aug 12, 2018).

  2. [2]

    Rostky, G. H. Hot and cold. Electron. Des. 1958, 6, 22.

  3. [3]

    Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

  4. [4]

    Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

  5. [5]

    Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–278.

  6. [6]

    Kumar, S.; Dang, T. D.; Arnold, F. E.; Bhattacharyya, A. R.; Min, B. G.; Zhang, X. R.; Vaia, R. A.; Park, C.; Adams, W. W.; Hauge, R. H. et al. Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 2002, 35, 9039–9043.

  7. [7]

    Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447–1450.

  8. [8]

    Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331–1334.

  9. [9]

    Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1361.

  10. [10]

    Liu, C.; Cheng, H. M.; Cong, H. T.; Li, F.; Su, G.; Zhou, B. L.; Dresselhaus, M. S. Synthesis of macroscopically long ropes of well-aligned single-walled carbon nanotubes. Adv. Mater. 2000, 12, 1190–1192.

  11. [11]

    Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703.

  12. [12]

    Alvarenga, J.; Jarosz, P. R.; Schauerman, C. M.; Moses, B. T.; Landi, B. J.; Cress, C. D.; Raffaelle, R. P. High conductivity carbon nanotube wires from radial densification and ionic doping. Appl. Phys. Lett. 2010, 97, 182106.

  13. [13]

    Bucossi, A. R.; Cress, C. D.; Schauerman, C. M.; Rossi, J. E.; Puchades, I.; Landi, B. J. Enhanced electrical conductivity in extruded single-wall carbon nanotube wires from modified coagulation parameters and mechanical processing. ACS Appl. Mater. Interfaces 2015, 7, 27299–27305.

  14. [14]

    Cao, W. X.; Yang, L.; Qi, X. D.; Hou, Y.; Zhu, J. Q.; Yang, M. Carbon nanotube wires sheathed by aramid nanofibers. Adv. Fund. Mater. 2017, 27, 1701061.

  15. [15]

    Janas, D.; Cabrero-Vilatela, A.; Bulmer, J.; Kurzepa, L.; Koziol, K. K. Carbon nanotube wires for high-temperature performance. Carbon 2013, 64, 305–314.

  16. [16]

    Janas, D.; Herman, A. P.; Boncel, S.; Koziol, K. K. K. Iodine monochloride as a powerful enhancer of electrical conductivity of carbon nanotube wires. Carbon 2014, 73, 225–233.

  17. [17]

    Janas, D.; Vilatela, A. C.; Koziol, K. K. K. Performance of carbon nanotube wires in extreme conditions. Carbon 2013, 62, 438–446.

  18. [18]

    Jarosz, P.; Schauerman, C.; Alvarenga, J.; Moses, B.; Mastrangelo, T.; Raffaelle, R.; Ridgley, R.; Landi, B. Carbon nanotube wires and cables: Near-term applications and future perspectives. Nanoscale 2011, 3, 4542–4553.

  19. [19]

    Kurzepa, L.; Lekawa- Raus, A.; Patmore, J.; Koziol, K. Replacing copper wires with carbon nanotube wires in electrical transformers. Adv. Fund. Mater. 2014, 24, 619–624.

  20. [20]

    Li, D.; Yang, Q. S.; Liu, X.; Shang, J. J. Experimental investigation on tensile properties of carbon nanotube wires. Mech. Mater. 2017, 705, 42–48.

  21. [21]

    Misak, H. E.; Asmatulu, R.; Sabelkin, V.; Mall, S.; Kladitis, P. E. Tension-tension fatigue behavior of carbon nanotube wires. Carbon 2013, 52, 225–231.

  22. [22]

    Misak, H. E.; Sabelkin, V.; Mall, S.; Asmatulu, R.; Kladitis, P. E. Failure analysis of carbon nanotube wires. Carbon 2012, 50, 4871–4879.

  23. [23]

    Misak, H. E.; Sabelkin, V.; Mall, S.; Kladitis, P. E. Thermal fatigue and hypothermal atomic oxygen exposure behavior of carbon nanotube wire. Carbon 2013, 57, 42–49.

  24. [24]

    Sabelkin, V.; Misak, H. E.; Mall, S.; Asmatulu, R.; Kladitis, P. E. Tensile loading behavior of carbon nanotube wires. Carbon 2012, 50, 2530–2538.

  25. [25]

    Henck, H.; Pierucci, D.; Fugallo, G.; Avila, J.; Cassabois, G.; Dappe, Y. J.; Silly, M. G.; Chen, C. Y.; Gil, B.; Gatti, M. et al. Direct observation of the band structure in bulk hexagonal boron nitride. Phys. Rev. B 2017, 95, 085410.

  26. [26]

    Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

  27. [27]

    Cappellini, G.; Satta, G.; Palummo, M.; Onida, G. Optical properties of BN in cubic and layered hexagonal phases. Phys. Rev. B 2001, 64, 035104.

  28. [28]

    Ertug, B. Powder preparation, properties and industrial applications of hexagonal boron nitride. In Sintering Applications; Ertug, B., Ed.; IntechOpen: Rijeka, 2013; pp 33–55.

  29. [29]

    Li, L. H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Fund. Mater. 2016, 26, 2594–2608.

  30. [30]

    Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S. H.; Zhang, G. Z.; Li, H. U.; Iagodkine, E.; Haque, A.; Chen, L. Q.; Jackson, T. N. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579.

  31. [31]

    Wen, G.; Wu, G. L; Lei, T. Q.; Zhou, Y.; Guo, Z. X. Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications. J. Eur. Ceram. Soc. 2000, 20, 1923–1928.

  32. [32]

    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

  33. [33]

    Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

  34. [34]

    Khan, M. H.; Liu, H. K.; Sun, X. D.; Yamauchi, Y.; Bando, Y.; Golberg, D.; Huang, Z. G. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Mater. Today 2017, 20, 611–628.

  35. [35]

    Pan, C. B.; Ji, Y. E.; Xiao, N.; Hui, E.; Tang, K. C.; Guo, Y. Z.; Xie, X. M.; Puglisi, F. M.; Larcher, L.; Miranda, E. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Fund. Mater. 2017, 27, 1604811.

  36. [36]

    Son, S. K.; Siskins, M.; Mullan, C.; Yin, J.; Kravets, V. G.; Kozikov, A.; Ozdemir, S.; Alhazmi, M.; Holwill, M.; Watanabe, K. et al. Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air. 2D Mater. 2018, 5, 011006.

  37. [37]

    Corso, M.; Auwarter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

  38. [38]

    Dai, S.; Ma, Q.; Liu, M. K.; Andersen, T.; Fei, Z.; Goldflam, M. D.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 2015, 10, 682–686.

  39. [39]

    Woessner, A.; Lundeberg, M. B.; Gao, Y. D.; Principi, A.; Alonso- Gonzalez, P.; Carrega, M.; Watanabe, K.; Taniguchi, T.; Vignale, G.; Polini, M. et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 2015, 14, 421–425.

  40. [40]

    Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632.

  41. [41]

    Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.; Jena, D.; Johnson, N. M.; Jones, K. A.; Kaplar, R. J.; Rajan, S.; van de Walle, C. G.; Bellotti, E. et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater. 2018, 4, 1600501.

  42. [42]

    Matus, L. G. Instrumentation for aerospace applications: Electronic-based technologies. J. Aerosp. Eng. 2013, 26, 409–421.

  43. [43]

    Huang, J. W.; Pan, C.; Tran, S.; Cheng, B.; Watanabe, K.; Taniguchi, T.; Lau, C. N.; Bockrath, M. Superior current carrying capacity of boron nitride encapsulated carbon nanotubes with zero-dimensional contacts. Nana Lett. 2015, 75, 6836–6840.

  44. [44]

    Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.

  45. [45]

    Liu, K.; Sun, Y. H.; Lin, X. Y.; Zhou, R. E.; Wang, J. P.; Fan, S. S.; Jiang, K. L. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 2010, 4, 5827–5834.

  46. [46]

    Lin, X. Y.; Zhao, W.; Zhou, W. B.; Liu, P.; Luo, S.; Wei, H. M.; Yang, G. Z.; Yang, J. H.; Cui, J.; Yu, R. C. et al. Epitaxial growth of aligned and continuous carbon nanofibers from carbon nanotubes. ACS Nano 2017, 11, 1257–1263.

  47. [47]

    Li, Q. W.; Zhang, X. E.; DePaula, R. E.; Zheng, L. X.; Zhao, Y. H.; Stan, L.; Holesinger, T. G.; Arendt, P. N.; Peterson, D. E.; Zhu, Y. T. Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 2006, 18, 3160–3163.

  48. [48]

    Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science 2007, 318, 1892–1895.

  49. [49]

    Jiang, K. L.; Liu, L.; Liu, K.; Zhao, Q. Y.; Zhai, Y. C.; Fan S. S. Cable production method. China Patent CN101499337A, August 5, 2009.

  50. [50]

    Liu, L.; Jiang, K. L.; Fan, S. S.; Chen, Q. L.; Li, X. E.; Chen, J. L. Electromagnetic shielded cable. China Patent CN101090011A, December 12, 2007.

  51. [51]

    Caneva, S.; Weatherup, R. S.; Bayer, B. C.; Blume, R.; Cabrero-Vilatela, A.; Braeuninger-Weimer, P.; Martin, M. B.; Wang, R. Z.; Baehtz, C.; Schloegl, R. et al. Controlling catalyst bulk reservoir effects for monolayer hexagonal boron nitride CVD. Nano Lett. 2016, 16, 1250–1261.

  52. [52]

    Kim, G.; Jang, A. R.; Jeong, H. Y.; Lee, Z.; Kang, D. J.; Shin, H. S. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. NanoLett. 2013, 13, 1834–1839.

  53. [53]

    Nemanich, R. J.; Solin, S. A.; Martin, R. M. Light scattering study of boron nitride microcrystals. Phys. Rev. B 1981, 23, 6348–6356.

  54. [54]

    Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.

  55. [55]

    Paine, R. T.; Narula, C. K. Synthetic routes to boron nitride. Chem. Rev. 1990, 90, 73–91.

  56. [56]

    Herring, C.; Nichols, M. H. Thermionic emission. Rev. Mod. Phys. 1949, 21, 185–270.

  57. [57]

    Liu, P.; Sun, Q.; Zhu, E.; Liu, K.; Jiang, K. L.; Liu, L.; Li, Q. Q.; Fan, S. S. Measuring the work function of carbon nanotubes with thermionic method. Nano Lett. 2008, 8, 647–651.

  58. [58]

    Preobrajenski, A. B.; Vinogradov, A. S.; Martensson, N. Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): The role of the transition metal 3D states. Surf. Sci. 2005, 582, 21–30.

  59. [59]

    Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces. Phys. Rev. Lett. 1995, 75, 3918–3921.

  60. [60]

    Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B 1995, 57, 4606–4613.

  61. [61]

    He, C. Y.; Yu, Z. Z.; Sun, L. Z.; Zhong, J. X. Work Functions of boron nitride nanoribbons: First-principles study. J. Comput. Theor. Nanosci. 2012, 9, 16–22.

  62. [62]

    Jiao, N.; He, C. Y.; Zhang, C. X.; Peng, X. Y.; Zhang, K. W.; Sun, L. Z. Modulation effect of hydrogen and fluorine decoration on the surface work function of BN sheets. AIP Adv. 2012, 2, 022125.

  63. [63]

    Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg, D. Boron nitride nanotubes. Mater. Sci. Eng. R Rep. 2010, 70, 92–111.

  64. [64]

    Brodu, E.; Balat-Pichelin, M. Emissivity of boron nitride and metals for the solar probe plus mission. J. Spacecr. Rockets. 2016, 53, 1119–1127.

  65. [65]

    Gonzalez de Arrieta, I.; Echaniz, T.; Fuente, R.; del Campo, L.; De Sousa Meneses, D.; Lopez, G. A.; Tello, M. J. Mid-infrared optical properties of pyrolytic boron nitride in the 390–1050 °C temperature range using spectral emissivity measurements. J. Quant. Spectrosc. Radiat. Transf. 2017, 194, 1–6.

  66. [66]

    Frederikse, H. P. R.; Kahn, A. H.; Dragoo, A. L.; Hosier, W. R. Electrical resistivity and microwave transmission of hexagonal boron nitride. J. Am. Ceram. Soc. 1985, 68, 131–135.

  67. [67]

    Fowler, R. H. The thermionic emission constant A. Proc. Roy. Soc. A 1929, 722, 36–49.

  68. [68]

    Wigner, E. On the constant A in richardson's equation. Phys. Rev. 1936, 49, 696–700.

  69. [69]

    Wei, Y.; Jiang, K. L.; Feng, X. E.; Liu, P.; Liu, L.; Fan, S. S. Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Phys. Rev. B 2007, 76, 045423.

Download references

Acknowledgments

The authors thank Chunhai Zhang, Qingyu Zhao, Ke Zhang, Lin Cong, Wen Ning, Xinyu Gao, Yueming Liang, Yuqian Cai, Guang Wang, and Zebin Liu for their valuable helps. This work is financially supported by the National Key R&D Program of China (Nos. 2018YFA0208401 and 2017YFA0205800), the National Natural Science Foundation of China (Nos. 51788104, 51727805, and 51672152). This work is supported in part by the Beijing Advanced Innovation Center for Future Chip (ICFC).

Author information

Correspondence to Peng Liu or Kaili Jiang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, P., Zhou, D. et al. High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity. Nano Res. 12, 1855–1861 (2019) doi:10.1007/s12274-019-2447-z

Download citation

Keywords

  • high temperature wire
  • carbon nanotube (CNT)
  • h-boron nitride (h-BN)
  • work function
  • bandgap