Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials

  • Mohammed Mouhib
  • Alessandra Antonucci
  • Melania Reggente
  • Amirmostafa Amirjani
  • Alice J. Gillen
  • Ardemis A. BoghossianEmail author
Review Article


Microbial fuel cells and biophotovoltaics represent promising technologies for green bioelectricity generation. However, these devices suffer from low durability and efficiency that stem from their reliance on living organisms to act as catalysts. Such limitations can be overcome with augmented capabilities enabled by nanotechnology. This review presents an overview of the different nanomaterials used to enhance bioelectricity generation through improved light harvesting, extracellular electron transfer, and anode performance. The implementation of nanomaterials in whole-cell energy devices holds promise in developing bioelectrical devices that are suitable for industry.


biophotovoltaics extracellular electron transfer microbial fuel cell bioelectricity energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; United Nations: New York, 2017.Google Scholar
  2. [2]
    Huang, L. B.; Xu, W.; Hao, J. H. Energy device applications of synthesized 1D polymer nanomaterials. Small 2017, 13, 1701820.CrossRefGoogle Scholar
  3. [3]
    Jiang, B. P.; Zhou, B.; Lin, Z. X.; Liang, H.; Shen, X. C. Recent advances in carbon nanomaterials for cancer phototherapy. Chem.—Eur. J. 2019, 25, 3993–4004.CrossRefGoogle Scholar
  4. [4]
    Ghosal, K.; Sarkar, K. Biomedical applications of graphene nanomaterials and beyond. ACS Biomater. Sci. Eng. 2018, 4, 2653–2703.CrossRefGoogle Scholar
  5. [5]
    Kwon, O. S.; Song, H. S.; Park, T. H.; Jang, J. Conducting nanomaterial sensor using natural receptors. Chem. Rev. 2019, 119, 36–93.CrossRefGoogle Scholar
  6. [6]
    Schneemann, A.; White, J. L.; Kang, S.; Jeong, S.; Wan, L. F.; Cho, E. S.; Heo, T. W.; Prendergast, D.; Urban, J. J.; Wood, B. C. et al. Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 2018, 118, 10775–10839.CrossRefGoogle Scholar
  7. [7]
    Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.CrossRefGoogle Scholar
  8. [8]
    Wang, H.; Chen, Q. W.; Zhou, S. Q. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47, 4198–4232.CrossRefGoogle Scholar
  9. [9]
    Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A. J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev. 2019, 119, 120–194.CrossRefGoogle Scholar
  10. [10]
    Shin, T. H.; Cheon, J. Synergism of nanomaterials with physical stimuli for biology and medicine. Acc. Chem. Res. 2017, 50, 567–572.CrossRefGoogle Scholar
  11. [11]
    Amirjani, A.; Fatmehsari, D. H. Colorimetric detection of ammonia using smartphones based on localized surface Plasmon resonance of silver nanoparticles. Talanta 2018, 176, 242–246.CrossRefGoogle Scholar
  12. [12]
    Chen, J. M.; Guo, L. H.; Qiu, B.; Lin, Z. Y.; Wang, T. Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy. Mater. Chem. Front. 2018, 2, 835–860.CrossRefGoogle Scholar
  13. [13]
    Amirjani, A.; Haghshenas, D. F. Ag nanostructures as the surface Plasmon resonance (SPR)-based sensors: A mechanistic study with an emphasis on heavy metallic ions detection. Sens. Actuators B Chem. 2018, 273, 1768–1779.CrossRefGoogle Scholar
  14. [14]
    Kalathil, S.; van Nguyen, H.; Shim, J. J.; Khan, M. M.; Lee, J.; Cho, M. H. Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J. Nanosci. Nanotechnol. 2013, 13, 7712–7716.CrossRefGoogle Scholar
  15. [15]
    Kou, T. Y.; Yang, Y.; Yao, B.; Li, Y. Interpenetrated bacteria-carbon nanotubes film for microbial fuel cells. Small Methods 2018, 2, 1800152.CrossRefGoogle Scholar
  16. [16]
    Wu, R. R.; Cui, L.; Chen, L. X.; Wang, C.; Cao, C. L.; Sheng, G P.; Yu, H.; Zhao, F. Effects of bio-Au nanoparticles on electrochemical activity of Shewanella oneidensis wild type and AomcA/mtrC mutant. Sci. Rep. 2013, 3, 3307.CrossRefGoogle Scholar
  17. [17]
    Wu, R. R.; Wang, C.; Shen, J. S.; Zhao, F. A role for biosynthetic CdS quantum dots in extracellular electron transfer of Saccharomyces cerevisiae. Process Biochem. 2015, 50, 2061–2065.CrossRefGoogle Scholar
  18. [18]
    Li, W.; Wu, S. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Hu, C. F.; Liu, Y. L.; Lei, B. F.; Ma, L.; Wang, X. J. Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots. Adv. Funct. Mater. 2018, 28, 1804004.CrossRefGoogle Scholar
  19. [19]
    Chandra, S.; Pradhan, S.; Mitra, S.; Patra, P.; Bhattacharya, A.; Pramanik, P.; Goswami, A. High throughput electron transfer from carbon dots to chloroplast: A rationale of enhanced photosynthesis. Nanoscale 2014, 6, 3647–3655.CrossRefGoogle Scholar
  20. [20]
    Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., in press, DOI:
  21. [21]
    de Carvalho, J. F.; de Medeiros, S. N.; Morales, M. A.; Dantas, A. L.; Carriço, A. S. Synthesis of magnetite nanoparticles by high energy ball milling. Appl. Surf. Sci. 2013, 275, 84–87.CrossRefGoogle Scholar
  22. [22]
    Tsuzuki, T.; McCormick, P. G. Mechanochemical synthesis of nanoparticles. J. Mater. Sci. 2004, 39, 5143–5146.CrossRefGoogle Scholar
  23. [23]
    Mueller, R.; Mädler, L.; Pratsinis, S. E. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci. 2003, 58, 1969–1976.CrossRefGoogle Scholar
  24. [24]
    Gondal, M. A.; Drmosh, Q. A.; Yamani, Z. H.; Saleh, T. A. Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl. Surf. Sci. 2009, 256, 298–304.CrossRefGoogle Scholar
  25. [25]
    Sen, P.; Ghosh, J.; Abdullah, A.; Kumar, P.; Vandana. Preparation of Cu, Ag, Fe and A1 nanoparticles by the exploding wire technique. J. Chem. Sci. 2003, 115, 499–508.CrossRefGoogle Scholar
  26. [26]
    Pérez-Tijerina, E.; Mejía-Rosales, S.; Inada, H.; José-Yacamán, M. Effect of temperature on AuPd nanoparticles produced by inert gas condensation. J. Phys. Chem. C 2010, 114, 6999–7003.CrossRefGoogle Scholar
  27. [27]
    Gutiérrez-Wing, C.; Velázquez-Salazar, J. J.; José-Yacamán, M. Procedures for the synthesis and capping of metal nanoparticles. In Nanoparticles in Biology and Medicine: Methods and Protocols; Soloviev, M., Ed.; Humana Press: Totowa, NJ, 2012; pp 3–19.CrossRefGoogle Scholar
  28. [28]
    Duan, H. H.; Wang, D. S.; Li, Y. D. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792.CrossRefGoogle Scholar
  29. [29]
    Rivero, P. J.; Goicoechea, J.; Urrutia, A.; Arregui, F. J. Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Res. Lett. 2013, 8, 101.CrossRefGoogle Scholar
  30. [30]
    Phan, C. M.; Nguyen, H. M. Role of capping agent in wet synthesis of nanoparticles. J. Phys. Chem. A 2017, 121, 3213–3219.CrossRefGoogle Scholar
  31. [31]
    Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.CrossRefGoogle Scholar
  32. [32]
    Dzimitrowicz, A.; Jamroz, P.; diCenzo, G. C.; Gil, W.; Bojszczak, W.; Motyka, A.; Pogoda, D.; Pohl, P. Fermented juices as reducing and capping agents for the biosynthesis of size-defined spherical gold nanoparticles. J. Saudi Chem. Soc. 2018, 22, 767–776.CrossRefGoogle Scholar
  33. [33]
    Tan, Y. N.; Lee, J. Y.; Wang, D. I. C. Uncovering the design rules for peptide synthesis of metal nanoparticles. J. Am. Chem. Soc. 2010, 132, 5677–5686.CrossRefGoogle Scholar
  34. [34]
    Chiu, C. Y.; Li, Y. J.; Ruan, L. Y.; Ye, X. C.; Murray, C. B.; Huang, Y. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393–399.CrossRefGoogle Scholar
  35. [35]
    Jiang, X. C.; Hu, J. S.; Lieber, A. M.; Jackan, C. S.; Biffinger, J. C.; Fitzgerald, L. A.; Ringeisen, B. R.; Lieber, C. M. Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 2014, 14, 6737–6742.CrossRefGoogle Scholar
  36. [36]
    Wu, X. E.; Zhao, F.; Rahunen, N.; Varcoe, J. R.; Avignone-Rossa, C.; Thumser, A. E.; Slade, R. C. T. A role for microbial palladium nanoparticles in extracellular electron transfer. Angew. Chem. 2011, 123, 447–450.CrossRefGoogle Scholar
  37. [37]
    Dong, C. F.; Zhang, X. L.; Cai, H.; Cao, C. L. Green synthesis of biocompatible silver nanoparticles mediated by Osmanthus fragrans extract in aqueous solution. Optik 2016, 127, 10378–10388.CrossRefGoogle Scholar
  38. [38]
    Huang, H. Z.; Yang, X. R. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res. 2004, 339, 2627–2631.CrossRefGoogle Scholar
  39. [39]
    Hulkoti, N. I.; Taranath, T. C. Biosynthesis of nanoparticles using microbes—A review. Colloids Surf. B Biointerfaces 2014, 121, 474–483.CrossRefGoogle Scholar
  40. [40]
    Freitas, D. V.; Passos, S. G. B.; Dias, J. M. M.; Mansur, A.; Carvalho, S. M.; Mansur, H.; Navarro, M. Toward greener electrochemical synthesis of composition-tunable luminescent CdX-based (X = Te, Se, S) quantum dots for bioimaging cancer cells. Sens. Actuators B Chem. 2017, 250, 233–243.CrossRefGoogle Scholar
  41. [41]
    Kuo, T. R.; Hung, S. T.; Lin, Y. T.; Chou, T. L.; Kuo, M. C.; Kuo, Y. P.; Chen, C. C. Green synthesis of InP/ZnS core/shell quantum dots for application in heavy-metal-free light-emitting diodes. Nanoscale Res. Lett. 2017, 12, 537.CrossRefGoogle Scholar
  42. [42]
    Wang, Z.; Cao, L. J.; Ding, Y. M.; Shi, R.; Wang, X. J.; Lu, H.; Liu, Z. D.; Xiu, F.; Liu, J. Q.; Huang, W. One-step and green synthesis of nitrogen-doped carbon quantum dots for multifunctional electronics. RSC Adv. 2017, 7, 21969–21973.CrossRefGoogle Scholar
  43. [43]
    Durmusoglu, E. G.; Turker, Y.; Acar, H. Y. Green synthesis of strongly luminescent, ultrasmall PbS and PbSe quantum dots. J. Phys. Chem. C 2017, 121, 12407–12415.CrossRefGoogle Scholar
  44. [44]
    Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 2001, 105, 8861–8871.CrossRefGoogle Scholar
  45. [45]
    Gao, X. H.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. M. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63–72.CrossRefGoogle Scholar
  46. [46]
    Pu, Y.; Cai, F. H.; Wang, D.; Wang, J. X.; Chen, J. F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Ind. Eng. Chem. Res. 2018, 57, 1790–1802.CrossRefGoogle Scholar
  47. [47]
    Baskoutas, S.; Terzis, A. F. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 2006, 99, 013708.CrossRefGoogle Scholar
  48. [48]
    Nabiev, I.; Rakovich, A.; Sukhanova, A.; Lukashev, E.; Zagidullin, V.; Pachenko, V.; Rakovich, Y. P.; Donegan, J. F.; Rubin, A. B.; Govorov, A. O. Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers. Angew. Chem., Int. Ed. 2010, 49, 7217–7221.CrossRefGoogle Scholar
  49. [49]
    Bao, H. F.; Lu, Z. S.; Cui, X. Q.; Qiao, Y.; Guo, J.; Anderson, J. M.; Li, C. M. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 2010, 6, 3534–3541.CrossRefGoogle Scholar
  50. [50]
    Bao, H. F.; Hao, N.; Yang, Y. X.; Zhao, D. Y. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 2010, 3, 481–489.CrossRefGoogle Scholar
  51. [51]
    Chen, G. Q.; Yi, B.; Zeng, G. M.; Niu, Q. Y.; Yan, M.; Chen, A. W.; Du, J. J.; Huang, J.; Zhang, Q. H. Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf. B Biointerfaces 2014, 117, 199–205.CrossRefGoogle Scholar
  52. [52]
    Boghossian, A. A.; Sen, F.; Gibbons, B. M.; Sen, S.; Faltermeier, S. M.; Giraldo, J. P.; Zhang, C. T.; Zhang, J. Q.; Heller, D. A.; Strano, M. S. Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater. 2013, 3, 881–893.CrossRefGoogle Scholar
  53. [53]
    Hong, F. S.; Zhou, J.; Liu, C.; Yang, F.; Wu, C.; Zheng, L.; Yang, P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 2005, 105, 269–279.CrossRefGoogle Scholar
  54. [54]
    Sun, D. Q.; Hussain, H. I.; Yi, Z. F.; Rookes, J. E.; Kong, L. X.; Cahill, D. M. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 2016, 152, 81–91.CrossRefGoogle Scholar
  55. [55]
    Nikam, A. V.; Prasad, B. L. V.; Kulkarni, A. A. Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm 2018, 20, 5091–5107.CrossRefGoogle Scholar
  56. [56]
    Rufus, A.; Sreeju, N.; Philip, D. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 2016, 6, 94206–94217.CrossRefGoogle Scholar
  57. [57]
    Santhoshkumar, J.; Kumar, S. V.; Rajeshkumar, S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour. Effic. Technol. 2017, 3, 459–465.CrossRefGoogle Scholar
  58. [58]
    Kumar, P. P. N. V.; Shameem, U.; Kollu, P.; Kalyani, R. L.; Pammi, S. V. N. Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. Bionanoscience 2015, 5, 135–139.CrossRefGoogle Scholar
  59. [59]
    Zaytseva, O.; Neumann, G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016, 3, 17.CrossRefGoogle Scholar
  60. [60]
    Endo, M.; Iijima, S.; Dresselhaus, S. M. Carbon Nanotubes. Carbon; Elsevier: Oxford, 1996.Google Scholar
  61. [61]
    Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.CrossRefGoogle Scholar
  62. [62]
    Scott, L. T.; Boorum, M. M.; Mcmahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. A rational chemical synthesis of C60. Science 2002, 295, 1500–1503.CrossRefGoogle Scholar
  63. [63]
    Yadav, B. C.; Kumar, R. Structure, properties and applications of fullerenes. Int. J. Nanotechnol. Appl. 2008, 2, 15–24.Google Scholar
  64. [64]
    Tripathi, D. K.; Ahmad, P.; Sharma, S.; Chauhan, D. K.; Dubey, N. K. Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies: Volume 1; Academic Press: London, 2017.Google Scholar
  65. [65]
    Lin, S. J.; Reppert, J.; Hu, Q.; Hudson, J. S.; Reid, M. L.; Ratnikova, T. A.; Rao, A. M.; Luo, H.; Ke, P. C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 2009, 5, 1128–1132.CrossRefGoogle Scholar
  66. [66]
    Imahori, H.; Mori, Y.; Matano, Y. Nanostructured artificial photosynthesis. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 51–83.CrossRefGoogle Scholar
  67. [67]
    D’Souza, F.; Smith, P. M.; Zandler, M. E.; McCarty, A. L.; Itou, M.; Araki, Y.; Ito, O. Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: A model for the photosynthetic antenna-reaction center complex. J. Am. Chem. Soc. 2004, 126, 7898–7907.CrossRefGoogle Scholar
  68. [68]
    Imahori, H.; Fukuzumi, S. Porphyrin-and fullerene-based molecular photovoltaic devices. Adv. Funct. Mater. 2004, 14, 525–536.CrossRefGoogle Scholar
  69. [69]
    El-Khouly, M. E.; Araki, Y.; Fujitsuka, M.; Watanabe, A.; Ito, O. Photoinduced electron transfer between chlorophylls (a/b) and fullerenes (C60/C70) studied by laser flash photolysis. Photochem. Photobiol. 2001, 74, 22–30.CrossRefGoogle Scholar
  70. [70]
    Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393.CrossRefGoogle Scholar
  71. [71]
    Bronikowski, M. J.; Willis, P. A.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A 2001, 19, 1800–1805.CrossRefGoogle Scholar
  72. [72]
    Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.CrossRefGoogle Scholar
  73. [73]
    Kitiyanan, B.; Alvarez, W. E.; Harwell, J. H.; Resasco, D. E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett. 2000, 317, 497–503.CrossRefGoogle Scholar
  74. [74]
    Herrera, J. E.; Balzano, L.; Borgna, A.; Alvarez, W. E.; Resasco, D. E. Relationship between the structure/composition of Co-Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation. J. Catal. 2001, 204, 129–145.CrossRefGoogle Scholar
  75. [75]
    Giraldo, J. P.; Landry, M. P.; Faltermeier, S. M.; McNicholas, T. P.; Iverson, N. M.; Boghossian, A. A.; Reuel, N. F.; Hilmer, A. J.; Sen, F.; Brew, J. A. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 2014, 13, 400–408.CrossRefGoogle Scholar
  76. [76]
    Dorogi, M.; Bálint, Z.; Mikó, C.; Vileno, B.; Milas, M.; Hernádi, K.; László, F.; Váró, G.; Nagy, L. Stabilization effect of single-walled carbon nanotubes on the functioning of photosynthetic reaction centers. J. Phys. Chem. B 2006, 110, 21473–21479.CrossRefGoogle Scholar
  77. [77]
    Kaniber, S. M.; Simmel, F. C.; Holleitner, A. W.; Carmeli, I. The optoelectronic properties of a photosystem I-carbon nanotube hybrid system. Nanotechnology 2009, 20, 345701.CrossRefGoogle Scholar
  78. [78]
    Sekar, N.; Umasankar, Y.; Ramasamy, R. P. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photobioelectrochemical cells. Phys. Chem. Chem. Phys. 2014, 16, 7862–7871.CrossRefGoogle Scholar
  79. [79]
    Yan, F. F.; He, Y. R.; Wu, C.; Cheng, Y. Y.; Li, W. W.; Yu, H. Q. Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1. Environ. Sci. Technol. Lett. 2014, 1, 128–132.CrossRefGoogle Scholar
  80. [80]
    Kim, S. I.; Roh, S. H. Multiwalled carbon nanotube/polyarcylonitrile composite as anode material for microbial fuel cells application. J. Nanosci. Nanotechnol. 2010, 10, 3271–3274.CrossRefGoogle Scholar
  81. [81]
    Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. S. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. 2004, 4, 345–348.CrossRefGoogle Scholar
  82. [82]
    Danilov, M. O.; Melezhyk, A. V. Carbon nanotubes modified with catalyst—Promising material for fuel cells. J. Power Sources 2006, 163, 376–381.CrossRefGoogle Scholar
  83. [83]
    Peng, L.; You, S. J.; Wang, J. Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens. Bioelectron. 2010, 25, 1248–1251.CrossRefGoogle Scholar
  84. [84]
    Zhao, C. E.; Wu, J. S.; Ding, Y. Z.; Wang, V. B.; Zhang, Y. D.; Kjelleberg, S.; Loo, J. S. C.; Cao, B.; Zhang, Q. C. Hybrid conducting biofilm with built-in bacteria for high-performance microbial fuel cells. ChemElectroChem 2015, 2, 654–658.CrossRefGoogle Scholar
  85. [85]
    Zhao, C. E.; Wu, J. S.; Kjelleberg, S.; Loo, J. S. C.; Zhang, Q. C. Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells. Small 2015, 11, 3440–3443.CrossRefGoogle Scholar
  86. [86]
    Wang, H. Y.; Wang, G. M.; Ling, Y. C.; Qian, F.; Song, Y.; Lu, X. H.; Chen, S. W.; Tong, Y. X.; Li, Y. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 2013, 5, 10283–10290.CrossRefGoogle Scholar
  87. [87]
    Yong, Y. C.; Dong, X. C.; Chan-Park, M. B.; Song, H.; Chen, P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 2012, 6, 2394–2400.CrossRefGoogle Scholar
  88. [88]
    Yuan, Y.; Zhou, S. G.; Zhao, B.; Zhuang, L.; Wang, Y. Q. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresour. Technol. 2012, 116, 453–458.CrossRefGoogle Scholar
  89. [89]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  90. [90]
    Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.CrossRefGoogle Scholar
  91. [91]
    Hu, C. G.; Zhang, Y. Y.; Bao, G.; Zhang, Y. L.; Liu, M. L.; Wang, Z. L. DNA functionalized single-walled carbon nanotubes for electrochemical detection. J. Phys. Chem. B 2005, 109, 20072–20076.CrossRefGoogle Scholar
  92. [92]
    Martinková, N.; Nová, P.; Sablina, O. V.; Graphodatsky, A. S.; Zima, J. Karyotypic relationships of the Tatra vole (Microtus tatricus). Folia Zool. 2004, 53, 279–284.Google Scholar
  93. [93]
    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  94. [94]
    Lee, S.; Eom, S. H.; Chung, J. S.; Hur, S. H. Large-scale production of high-quality reduced graphene oxide. Chem. Eng. J. 2013, 233, 297–304.CrossRefGoogle Scholar
  95. [95]
    Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  96. [96]
    Tamburri, E.; Orlanducci, S.; Toschi, F.; Terranova, M. L.; Passeri, D. Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth. Met. 2009, 159, 406–414.CrossRefGoogle Scholar
  97. [97]
    Wang, Y. X.; Li, S. L.; Liu, L. B.; Lv, F. T.; Wang, S. Conjugated polymer nanoparticles to augment photosynthesis of chloroplasts. Angew. Chem., Int. Ed. 2017, 56, 5308–5311.CrossRefGoogle Scholar
  98. [98]
    Feng, L. H.; Liu, L. B.; Lv, F. T.; Bazan, G. C.; Wang, S. Preparation and biofunctionalization of multicolor conjugated polymer nanoparticles for imaging and detection of tumor cells. Adv. Mater. 2014, 26, 3926–3930.CrossRefGoogle Scholar
  99. [99]
    Xie, J.; Zhao, C. E.; Lin, Z. Q.; Gu, P. Y.; Zhang, Q. C. Nanostructured conjugated polymers for energy-related applications beyond solar cells. Chem.—Asian J. 2016, 11, 1489–1511.CrossRefGoogle Scholar
  100. [100]
    Li, C.; Zhang, L. B.; Ding, L. L.; Ren, H. Q.; Cui, H. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens. Bioelectron. 2011, 26, 4169–4176.CrossRefGoogle Scholar
  101. [101]
    Kang, Y. L.; Ibrahim, S.; Pichiah, S. Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresour. Technol. 2015, 189, 364–369.CrossRefGoogle Scholar
  102. [102]
    Song, R. B.; Yan, K.; Lin, Z. Q.; Loo, J. S. C.; Pan, L. J.; Zhang, Q. C.; Zhang, J. R.; Zhu, J. J. Inkjet-printed porous polyaniline gel as an efficient anode for microbial fuel cells. J. Mater. Chem. A 2016, 4, 14555–14559.CrossRefGoogle Scholar
  103. [103]
    Bombelli, P.; Zarrouati, M.; Thorne, R. J.; Schneider, K.; Rowden, S. J. L.; Ali, A.; Yunus, K.; Cameron, P. J.; Fisher, A. C.; Ian Wilson, D. et al. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys. Chem. Chem. Phys. 2012, 14, 12221–12229.CrossRefGoogle Scholar
  104. [104]
    Song, R. B.; Wu, Y. C.; Lin, Z. Q.; Xie, J.; Tan, C. H.; Loo, J. S. C.; Cao, B.; Zhang, J. R.; Zhu, J. J.; Zhang, Q. C. Living and conducting: Coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem., Int. Ed. 2017, 56, 10516–10520.CrossRefGoogle Scholar
  105. [105]
    Zajdel, T. J.; Baruch, M.; Méhes, G.; Stavrinidou, E.; Berggren, M.; Maharbiz, M. M.; Simon, D. T.; Ajo-Franklin, C. M. PEDOT: PSS-based multilayer bacterial-composite films for bioelectronics. Sci. Rep. 2018, 8, 15293.CrossRefGoogle Scholar
  106. [106]
    Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185–196.CrossRefGoogle Scholar
  107. [107]
    Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 2011, 3, 763–774.CrossRefGoogle Scholar
  108. [108]
    Wraight, C. A.; Clayton, R. K. The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim. Biophys. ActaBioenerg. 1974, 333, 246–260.CrossRefGoogle Scholar
  109. [109]
    Cho, H. M.; Mancino, L. J.; Blankenship, R. E. Light saturation curves and quantum yields in reaction centers from photosynthetic bacteria. Biophys. J. 1984, 45, 455–461.CrossRefGoogle Scholar
  110. [110]
    Martin, W.; Kowallik, K. Annotated english translation of mereschkowsky’s 1905 paper “Über natur und ursprung der chromatophoren impflanzenreiche”. Eur. J. Phycol. 1999, 34, 287–295.Google Scholar
  111. [111]
    Raven, J. A.; Allen, J. F. Genomics and chloroplast evolution: What did cyanobacteria do for plants? Genome Biol. 2003, 4, 209.CrossRefGoogle Scholar
  112. [112]
    Blankenship, R. E. Early evolution of photosynthesis. Plant Physiol. 2010, 154, 434–438.CrossRefGoogle Scholar
  113. [113]
    Barber, J.; Tran, P. D. From natural to artificial photosynthesis. J. Roy. Soc. Interface 2013, 10, 20120984.CrossRefGoogle Scholar
  114. [114]
    Gust, D.; Moore, T. A.; Moore, A. L. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 2001, 34, 40–48.CrossRefGoogle Scholar
  115. [115]
    Alharbi, F. H.; Kais, S. Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 2015, 43, 1073–1089.CrossRefGoogle Scholar
  116. [116]
    Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.CrossRefGoogle Scholar
  117. [117]
    Kalyanasundaram, K.; Graetzel, M. Artificial photosynthesis: Biomimetic approaches to solar energy conversion and storage. Curr. Opin. Biotechnol. 2010, 21, 298–310.CrossRefGoogle Scholar
  118. [118]
    Badura, A.; Kothe, T.; Schuhmann, W.; Rögner, M. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci. 2011, 4, 3263–3274.CrossRefGoogle Scholar
  119. [119]
    Ham, M. H.; Choi, J. H.; Boghossian, A. A.; Jeng, E. S.; Graff, R. A.; Heller, D. A.; Chang, A. C.; Mattis, A.; Bayburt, T. H.; Grinkova, Y. V. et al. Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat. Chem. 2010, 2, 929–936.CrossRefGoogle Scholar
  120. [120]
    Milano, F.; Punzi, A.; Ragni, R.; Trotta, M.; Farinola, G. M. Photonics and optoelectronics with bacteria: Making materials from photosynthetic microorganisms. Adv. Funct. Mater. 2019, 29, 1805521.CrossRefGoogle Scholar
  121. [121]
    McCormick, A. J.; Bombelli, P.; Scott, A. M.; Philips, A. J.; Smith, A. G.; Fisher, A. C.; Howe, C. J. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci. 2011, 4, 4699–4709.CrossRefGoogle Scholar
  122. [122]
    Wenzel, T.; Härtter, D.; Bombelli, P.; Howe, C. J.; Steiner, U. Porous translucent electrodes enhance current generation from photosynthetic biofilms. Nat. Commun. 2018, 9, 1299.CrossRefGoogle Scholar
  123. [123]
    Sawa, M.; Fantuzzi, A.; Bombelli, P.; Howe, C. J.; Hellgardt, K.; Nixon, P. J. Electricity generation from digitally printed cyanobacteria. Nat. Commun. 2017, 8, 1327.CrossRefGoogle Scholar
  124. [124]
    Operamolla, A.; Ragni, R.; Milano, F.; Roberto Tangorra, R.; Antonucci, A.; Agostiano, A.; Trotta, M.; Farinola, G “Garnishing” the photosynthetic bacterial reaction center for bioelectronics. J. Mater. Chem. C 2015, 3, 6471–6478.CrossRefGoogle Scholar
  125. [125]
    Kim, Y.; Shin, S. A.; Lee, J.; Yang, K. D.; Nam, K. T. Hybrid system of semiconductor and photosynthetic protein. Nanotechnology 2014, 25, 342001.CrossRefGoogle Scholar
  126. [126]
    Yaghoubi, H.; Li, Z.; Jun, D. L.; Saer, R.; Slota, J. E.; Beerbom, M.; Schlaf, R.; Madden, J. D.; Beatty, J. T.; Takshi, A. The role of gold-adsorbed photosynthetic reaction centers and redox mediators in the charge transfer and photocurrent generation in a bio-photoelectrochemical cell. J. Phys. Chem. C 2012, 116, 24868–24877.CrossRefGoogle Scholar
  127. [127]
    Glowacki, E. D.; Tangorra, R. R.; Coskun, H.; Farka, D.; Operamolla, A.; Kanbur, Y.; Milano, F.; Giotta, L.; Farinola, G. M.; Sariciftci, N. S. Bioconjugation of hydrogen-bonded organic semiconductors with functional proteins. J. Mater. Chem. C 2015, 3, 6554–6564.CrossRefGoogle Scholar
  128. [128]
    Mirkovic, T.; Ostroumov, E. E.; Anna, J. M.; van Grondelle, R.; Govindjee; Scholes, G. D. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 2017, 117, 249–293.CrossRefGoogle Scholar
  129. [129]
    Govorov, A. O. Enhanced optical properties of a photosynthetic system conjugated with semiconductor nanoparticles: The role of förster transfer. Adv. Mater. 2008, 20, 4330–4335.CrossRefGoogle Scholar
  130. [130]
    Cai, P.; Jia, Y.; Feng, X. Y.; Li, J.; Li, J. B. Assembly of CdTe quantum dots and photosystem II multilayer films with enhanced photocurrent. Chin. J. Chem. 2017, 35, 881–885.CrossRefGoogle Scholar
  131. [131]
    Carmeli, I.; Lieberman, I.; Kraversky, L.; Fan, Z. Y.; Govorov, A. O.; Markovich, G.; Richter, S. Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nano Lett. 2010, 10, 2069–2074.CrossRefGoogle Scholar
  132. [132]
    Beyer, S. R.; Ullrich, S.; Kudera, S.; Gardiner, A. T.; Cogdell, R. J.; Köhler, J. Hybrid nanostructures for enhanced light-harvesting: Plasmon induced increase in fluorescence from individual photosynthetic pigment-protein complexes. Nano Lett. 2011, 11, 4897–4901.CrossRefGoogle Scholar
  133. [133]
    Yehezkeli, O.; Tel-Vered, R.; Wasserman, J.; Trifonov, A.; Michaeli, D.; Nechushtai, R.; Willner, I. Integrated photosystem II-based photobioelectrochemical cells. Nat. Commun. 2012, 3, 742.CrossRefGoogle Scholar
  134. [134]
    Lebedev, N.; Trammell, S. A.; Tsoi, S.; Spano, A.; Kim, J. H.; Xu, J.; Twigg, M. E.; Schnur, J. M. Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode. Langmuir 2008, 24, 8871–8876.CrossRefGoogle Scholar
  135. [135]
    Edelman, M.; Mattoo, A. K. D1-protein dynamics in photosystem II: The lingering enigma. Photosynth. Res. 2008, 98, 609–620.CrossRefGoogle Scholar
  136. [136]
    Scholes, G. D.; Sargent, E. H. Bioinspired materials: Boosting plant biology. Nat. Mater. 2014, 13, 329–331.CrossRefGoogle Scholar
  137. [137]
    Heath, R. L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198.CrossRefGoogle Scholar
  138. [138]
    Pradhan, S.; Patra, P.; Mitra, S.; Dey, K. K.; Basu, S.; Chandra, S.; Palit, P.; Goswami, A. Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: A biophysical and biochemical outlook on Vigna radiata. J. Agric. Food Chem. 2015, 63, 2606–2617.CrossRefGoogle Scholar
  139. [139]
    Faizan, M.; Faraz, A.; Yusuf, M.; Khan, S. T.; Hayat, S. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 2018, 56, 678–686.CrossRefGoogle Scholar
  140. [140]
    Wu, H. H.; Tito, N.; Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 2017, 11, 11283–11297.CrossRefGoogle Scholar
  141. [141]
    Wong, M. H.; Misra, R. P.; Giraldo, J. P.; Kwak, S. Y.; Son, Y.; Landry, M. P.; Swan, J. W.; Blankschtein, D.; Strano, M. S. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: A universal localization mechanism. Nano Lett. 2016, 16, 1161–1172.CrossRefGoogle Scholar
  142. [142]
    Lew, T. T. S.; Wong, M. H.; Kwak, S. Y.; Sinclair, R.; Koman, V. B.; Strano, M. S. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 2018, 14, 1802086.CrossRefGoogle Scholar
  143. [143]
    Antonucci, A.; Kupis-Rozmyslowicz, J.; Boghossian, A. A. Noncovalent protein and peptide functionalization of single-walled carbon nanotubes for biodelivery and optical sensing applications. ACS Appl. Mater. Interfaces 2017, 9, 11321–11331.CrossRefGoogle Scholar
  144. [144]
    Sai, L. M.; Liu, S. Q.; Qian, X. X.; Yu, Y. H.; Xu, X. F. Nontoxic fluorescent carbon nanodot serving as a light conversion material in plant for UV light utilization. Colloids Surf. B Biointerfaces 2018, 169, 422–428.CrossRefGoogle Scholar
  145. [145]
    Xu, Y. Q.; Fei, J. B.; Li, G. L.; Yuan, T. T.; Xu, X.; Wang, C. L.; Li, J. B. Optically matched semiconductor quantum dots improve photophosphorylation performed by chloroplasts. Angew. Chem., Int. Ed. 2018, 57, 6532–6535.CrossRefGoogle Scholar
  146. [146]
    Pradhan, S.; Patra, P.; Das, S.; Chandra, S.; Mitra, S.; Dey, K. K.; Akbar, S.; Palit, P.; Goswami, A. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular, biochemical, and biophysical study. Environ. Sci. Technol. 2013, 47, 13122–13131.CrossRefGoogle Scholar
  147. [147]
    Marritt, S. J.; Lowe, T. G.; Bye, J.; McMillan, D. G G; Shi, L.; Fredrickson, J.; Zachara, J.; Richardson, D. J.; Cheesman, M. R.; Jeuken, L. J. C. et al. A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. Biochem. J. 2012, 444, 465–474.CrossRefGoogle Scholar
  148. [148]
    Hori, T.; Aoyagi, T.; Itoh, H.; Narihiro, T.; Oikawa, A.; Suzuki, K.; Ogata, A.; Friedrich, M. W.; Conrad, R.; Kamagata, Y. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Front. Microbiol. 2015, 6, 386.CrossRefGoogle Scholar
  149. [149]
    Cologgi, D. L.; Lampa-Pastirk, S.; Speers, A. M.; Kelly, S. D.; Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl. Acad. Sci. USA 2011, 108, 15248–15252.CrossRefGoogle Scholar
  150. [150]
    Belchik, S. M.; Kennedy, D. W.; Dohnalkova, A. C.; Wang, Y. M.; Sevinc, P. C.; Wu, H.; Lin, Y. H.; Lu, H. P.; Fredrickson, J. K.; Shi, L. Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 2011, 77, 4035–4041.CrossRefGoogle Scholar
  151. [151]
    Wei, J. C.; Liang, P.; Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102, 9335–9344.CrossRefGoogle Scholar
  152. [152]
    Bose, D.; Kandpal, V.; Dhawan, H.; Vijay, P.; Gopinath, M. Energy recovery with microbial fuel cells: Bioremediation and bioelectricity. In Waste Bioremediation; Varjani, S. J.; Gnansounou, E.; Gurunathan, B.; Pant, D.; Zakaria, Z. A., Eds.; Springer: Singapore, 2018; pp 7–33.CrossRefGoogle Scholar
  153. [153]
    Light, S. H.; Su, L.; Rivera-Lugo, R.; Cornejo, J. A.; Louie, A.; Iavarone, A. T.; Ajo-Franklin, C. M.; Portnoy, D. A. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 2018, 562, 140–144.CrossRefGoogle Scholar
  154. [154]
    You, L. X.; Liu, L. D.; Xiao, Y.; Dai, Y. F.; Chen, B. L.; Jiang, Y. X.; Zhao, F. Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry 2018, 119, 196–202.CrossRefGoogle Scholar
  155. [155]
    Deng, H.; Xue, H. J.; Zhong, W. H. A novel exoelectrogenic bacterium phylogenetically related to Clostridium sporogenes isolated from copper contaminated soil. Electroanalysis 2017, 29, 1294–1300.CrossRefGoogle Scholar
  156. [156]
    Jiang, Z. H.; Zhang, Y. C.; Liu, Z. Z.; Ma, Y. M.; Kang, J. Q.; Liu, Y. Isolation and characterization of an exoelectrogenic strain CL-1 from soil and electron transfer mechanism by linking electrochemistry and spectroscopy. Electrochim. Acta 2018, 292, 982–989.CrossRefGoogle Scholar
  157. [157]
    Koch, C.; Harnisch, F. Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 2016, 3, 1282–1295.CrossRefGoogle Scholar
  158. [158]
    Stookey, L. L. Ferrozine—A new spectrophotometric reagent for iron. Anal. Chem. 1970, 42, 779–781.CrossRefGoogle Scholar
  159. [159]
    Jensen, H. M.; TerAvest, M. A.; Kokish, M. G.; Ajo-Franklin, C. M. CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth. Biol. 2016, 5, 679–688.CrossRefGoogle Scholar
  160. [160]
    Xiao, X.; Liu, Q. Y.; Li, T. T.; Zhang, F.; Li, W. W.; Zhou, X. T.; Xu, M. Y.; Li, Q.; Yu, H. Q. A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability. Bioresour. Technol. 2017, 241, 743–749.CrossRefGoogle Scholar
  161. [161]
    Liu, Y. N.; Zhang, F.; Li, J.; Li, D. B.; Liu, D. F.; Li, W. W.; Yu, H. Q. Exclusive extracellular bioreduction of methyl orange by Azo reductase-free Geobacter sulfurreducens. Environ. Sci. Technol. 2017, 51, 8616–8623.CrossRefGoogle Scholar
  162. [162]
    Yuan, S. J.; Li, W. W.; Cheng, Y. Y.; He, H.; Chen, J. J.; Tong, Z. H.; Lin, Z. Q.; Zhang, F.; Sheng, G. P.; Yu, H. Q. A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nat. Protoc. 2014, 9, 112–119.CrossRefGoogle Scholar
  163. [163]
    Shi, L.; Squier, T. C.; Zachara, J. M.; Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes. Mol. Microbiol. 2007, 65, 12–20.CrossRefGoogle Scholar
  164. [164]
    Sturm-Richter, K.; Golitsch, F.; Sturm, G.; Kipf, E.; Dittrich, A.; Beblawy, S.; Kerzenmacher, S.; Gescher, J. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour. Technol. 2015, 186, 89–96.CrossRefGoogle Scholar
  165. [165]
    Jensen, H. M.; Albers, A. E.; Malley, K. R.; Londer, Y. Y.; Cohen, B. E.; Helms, B. A.; Weigele, P.; Groves, J. T.; Ajo-Franklin, C. M. Engineering of a synthetic electron conduit in living cells. Proc. Natl. Acad. Sci. USA 2010, 107, 19213–19218.CrossRefGoogle Scholar
  166. [166]
    Goldbeck, C. P.; Jensen, H. M.; Teravest, M. A.; Beedle, N.; Appling, Y.; Hepler, M.; Cambray, G.; Mutalik, V.; Angenent, L. T.; Ajo-Franklin, C. M. Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth. Biol. 2013, 2, 150–159.CrossRefGoogle Scholar
  167. [167]
    Teravest, M. A.; Ajo-Franklin, C. M. Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol. Bioeng. 2016, 113, 687–697.CrossRefGoogle Scholar
  168. [168]
    Shi, L.; Rosso, K. M.; Zachara, J. M.; Fredrickson, J. K. Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: A genomic perspective. Biochem. Soc. Trans. 2012, 40, 1261–1267.CrossRefGoogle Scholar
  169. [169]
    Gao, H. C.; Barua, S.; Liang, Y. L.; Wu, L.; Dong, Y. Y.; Reed, S.; Chen, J. R.; Culley, D.; Kennedy, D.; Yang, Y. F. et al. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration. Microb. Biotechnol. 2010, 3, 455–466.CrossRefGoogle Scholar
  170. [170]
    Myers, J. M.; Myers, C. R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J. Bacteriol. 2000, 182, 67–75.CrossRefGoogle Scholar
  171. [171]
    Fonseca, B. M.; Paquete, C. M.; Neto, S. E.; Pacheco, I.; Soares, C. M.; Louro, R. O. Mind the gap: Cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. Biochem. J. 2013, 449, 101–108.CrossRefGoogle Scholar
  172. [172]
    Sturm, G.; Richter, K.; Doetsch, A.; Heide, H.; Louro, R. O.; Gescher, J. A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J. 2015, 9, 1802–1811.CrossRefGoogle Scholar
  173. [173]
    Hartshorne, R. S.; Reardon, C. L.; Ross, D.; Nuester, J.; Clarke, T. A.; Gates, A. J.; Mills, P. C.; Fredrickson, J. K.; Zachara, J. M.; Shi, L. et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl. Acad. Sci. USA 2009, 106, 22169–22174.CrossRefGoogle Scholar
  174. [174]
    Shi, L.; Chen, B. W.; Wang, Z. M.; Elias, D. A.; Mayer, M. U.; Gorby, Y. A.; Ni, S.; Lower, B. H.; Kennedy, D. W.; Wunschel, D. S. et al. Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J. Bacteriol. 2006, 188, 4705–4714.CrossRefGoogle Scholar
  175. [175]
    White, G. F.; Edwards, M. J.; Gomez-Perez, L.; Richardson, D. J.; Butt, J. N.; Clarke, T. A. Mechanisms of bacterial extracellular electron exchange. Adv. Microb. Physiol. 2016, 68, 87–138.CrossRefGoogle Scholar
  176. [176]
    Coursolle, D.; Gralnick, J. A. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol. Microbiol. 2010, 77, 995–1008.Google Scholar
  177. [177]
    White, G. F.; Shi, Z.; Shi, L.; Wang, Z. M.; Dohnalkova, A. C.; Marshall, M. J.; Fredrickson, J. K.; Zachara, J. M.; Butt, J. N.; Richardson, D. J. et al. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc. Natl. Acad. Sci. USA 2013, 110, 6346–6351.CrossRefGoogle Scholar
  178. [178]
    Edwards, M. J.; White, G. F.; Lockwood, C. W.; Lawes, M. C.; Martel, A.; Harris, G.; Scott, D. J.; Richardson, D. J.; Butt, J. N.; Clarke, T. A. Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners. J. Biol. Chem. 2018, 293, 8103–8112.CrossRefGoogle Scholar
  179. [179]
    Blumberger, J. Electron transfer and transport through multi-heme proteins: Recent progress and future directions. Curr. Opin. Chem. Biol. 2018, 47, 24–31.CrossRefGoogle Scholar
  180. [180]
    Lovley, D. R. Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ. Sci. 2011, 4, 4896–4906.CrossRefGoogle Scholar
  181. [181]
    Summers, Z. M.; Fogarty, H. E.; Leang, C.; Franks, A. E.; Malvankar, N. S.; Lovley, D. R. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 2010, 330, 1413–1415.CrossRefGoogle Scholar
  182. [182]
    Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, R. A.; Reed, S. B.; Romine, M. F.; Saffarini, D. A.; Shi, L. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 2014, 111, 12883–12888.CrossRefGoogle Scholar
  183. [183]
    Gorgel, M.; Ulstrup, J. J.; Bøggild, A.; Jones, N. C.; Hoffmann, S. V.; Nissen, P.; Boesen, T. High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis. BMC Struct. Biol. 2015, 15, 4.CrossRefGoogle Scholar
  184. [184]
    Gorby, Y. A.; Yanina, S.; McLean, J. S.; Rosso, K. M.; Moyles, D.; Dohnalkova, A.; Beveridge, T. J.; Chang, I. S.; Kim, B. H.; Kim, K. S. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 2006, 103, 11358–11363.CrossRefGoogle Scholar
  185. [185]
    Sure, S.; Torriero, A. A. J.; Gaur, A.; Li, L. H.; Chen, Y.; Tripathi, C.; Adholeya, A.; Ackland, M. L.; Kochar, M. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: Characterization and modelling. Antonie van Leeuwenhoek 2015, 108, 1213–1225.CrossRefGoogle Scholar
  186. [186]
    Wang, F. B.; Gu, Y. Q.; O’Brien, J. P.; Yi, S. M.; Yalcin, S. E.; Srikanth, V.; Shen, C.; Vu, D.; Ing, N. L.; Hochbaum, A. I. et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 2019, 177, 361–369.e10.CrossRefGoogle Scholar
  187. [187]
    Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098–1101.CrossRefGoogle Scholar
  188. [188]
    Vargas, M.; Malvankar, N. S.; Tremblay, P. L.; Leang, C.; Smith, J. A.; Patel, P.; Synoeyenbos-West, O.; Nevin, K. P.; Lovley, D. R. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 2013, 4, e00105–13.CrossRefGoogle Scholar
  189. [189]
    Tan, Y.; Adhikari, R. Y.; Malvankar, N. S.; Pi, S.; Ward, J. E.; Woodard, T. L.; Nevin, K. P.; Xia, Q. F.; Tuominen, M. T.; Lovley, D. R. Synthetic biological protein nanowires with high conductivity. Small 2016, 12, 4481–4485.CrossRefGoogle Scholar
  190. [190]
    Feliciano, G. T.; Steidl, R. J.; Reguera, G. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys. Chem. Chem. Phys. 2015, 17, 22217–22226.CrossRefGoogle Scholar
  191. [191]
    Lampa-Pastirk, S.; Veazey, J. P.; Walsh, K. A.; Feliciano, G. T.; Steidl, R. J.; Tessmer, S. H.; Reguera, G. Thermally activated charge transport in microbial protein nanowires. Sci. Rep. 2016, 6, 23517.CrossRefGoogle Scholar
  192. [192]
    Malvankar, N. S.; Vargas, M.; Nevin, K.; Tremblay, P. L.; Evans-Lutterodt, K.; Nykypanchuk, D.; Martz, E.; Tuominen, M. T.; Lovley, D. R. Structural basis for metallic-like conductivity in microbial nanowires. MBio 2015, 6, e00084.CrossRefGoogle Scholar
  193. [193]
    Xiao, K.; Malvankar, N. S.; Shu, C. J.; Martz, E.; Lovley, D. R.; Sun, X. Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of Geobacter sulfurreducens pili. Sci. Rep. 2016, 6, 23385.CrossRefGoogle Scholar
  194. [194]
    Richter, L. V.; Sandler, S. J.; Weis, R. M. Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J. Bacteriol. 2012, 194, 2551–2563.CrossRefGoogle Scholar
  195. [195]
    Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968–3973.CrossRefGoogle Scholar
  196. [196]
    Kotloski, N. J.; Gralnick, J. A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 2013, 4, e00553–12.CrossRefGoogle Scholar
  197. [197]
    Yang, Y.; Ding, Y. Z.; Hu, Y. D.; Cao, B.; Rice, S. A.; Kjelleberg, S.; Song, H. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 2015, 4, 815–823.CrossRefGoogle Scholar
  198. [198]
    Coursolle, D.; Baron, D. B.; Bond, D. R.; Gralnick, J. A. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 2010, 192, 467–474.CrossRefGoogle Scholar
  199. [199]
    Hasan, K.; Bekir Yildiz, H.; Sperling, E.; Conghaile, P. Ó.; Packer, M. A.; Leech, D.; Hägerhäll, C.; Gorton, L. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 2014, 16, 24676–24680.CrossRefGoogle Scholar
  200. [200]
    Bombelli, P.; Bradley, R. W.; Scott, A. M.; Philips, A. J.; McCormick, A. J.; Cruz, S. M.; Anderson, A.; Yunus, K.; Bendall, D. S.; Cameron, P. J. et al. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ. Sci. 2011, 4, 4690–4698.CrossRefGoogle Scholar
  201. [201]
    Zhao, C. E.; Chen, J.; Ding, Y. Z.; Wang, V. B.; Bao, B. Q.; Kjelleberg, S.; Cao, B.; Loo, S. C. J.; Wang, L. H.; Huang, W. et al. Chemically functionalized conjugated oligoelectrolyte nanoparticles for enhancement of current generation in microbial fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 14501–14505.CrossRefGoogle Scholar
  202. [202]
    Yan, H. J.; Catania, C.; Bazan, G. C. Membrane-intercalating conjugated oligoelectrolytes: Impact on bioelectrochemical systems. Adv. Mater. 2015, 27, 2958–2973.CrossRefGoogle Scholar
  203. [203]
    Hou, H. J.; Chen, X. F.; Thomas, A. W.; Catania, C.; Kirchhofer, N. D.; Garner, L. E.; Han, A.; Bazan, G. C. Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells. Adv. Mater. 2013, 25, 1593–1597.CrossRefGoogle Scholar
  204. [204]
    Kirchhofer, N. D.; Chen, X. F.; Marsili, E.; Sumner, J. J.; Dahlquist, F. W.; Bazan, G. C. The conjugated oligoelectrolyte DSSN+ enables exceptional coulombic efficiency via direct electron transfer for anode-respiring Shewanella oneidensis MR-1—A mechanistic study. Phys. Chem. Chem. Phys. 2014, 16, 20436–20443.CrossRefGoogle Scholar
  205. [205]
    Wang, V. B.; Kirchhofer, N. D.; Chen, X. F.; Tan, M. Y. L.; Sivakumar, K.; Cao, B.; Zhang, Q. C.; Kjelleberg, S.; Bazan, G C.; Loo, S. C. J. et al. Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1. Electrochem. Commun. 2014, 41, 55–58.CrossRefGoogle Scholar
  206. [206]
    Wang, V. B.; Du, J.; Chen, X. F.; Thomas, A. W.; Kirchhofer, N. D.; Garner, L. E.; Maw, M. T.; Poh, W. H.; Hinks, J.; Wuertz, S. et al. Improving charge collection in Escherichia coli-carbon electrode devices with conjugated oligoelectrolytes. Phys. Chem. Chem. Phys. 2013, 15, 5867–5872.CrossRefGoogle Scholar
  207. [207]
    Logan, B. E.; Regan, J. M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006, 14, 512–518.CrossRefGoogle Scholar
  208. [208]
    Zou, Y. J.; Pisciotta, J.; Billmyre, R. B.; Baskakov, I. V.; Photosynthetic microbial fuel cells with positive light response. Biotechnol. Bioeng. 2009, 104, 939–946.CrossRefGoogle Scholar
  209. [209]
    Schuergers, N.; Werlang, C.; Ajo-Franklin, C. M.; Boghossian, A. A. A synthetic biology approach to engineering living photovoltaics. Energy Environ. Sci. 2017, 10, 1102–1115.CrossRefGoogle Scholar
  210. [210]
    Saper, G.; Kallmann, D.; Conzuelo, F.; Zhao, F. Y.; Tóth, T. N.; Liveanu, V.; Meir, S.; Szymanski, J.; Aharoni, A.; Schuhmann, W. et al. Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems. Nat. Commun. 2018, 9, 2168.CrossRefGoogle Scholar
  211. [211]
    Chaudhuri, S. K.; Lovley, D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21, 1229–1232.CrossRefGoogle Scholar
  212. [212]
    Scott, K.; Rimbu, G. A.; Katuri, K. P.; Prasad, K. K.; Head, I. M. Application of modified carbon anodes in microbial fuel cells. Process Saf. Environ. Prot. 2007, 85, 481–488.CrossRefGoogle Scholar
  213. [213]
    Yu, Y. Y.; Guo, C. X.; Yong, Y. C.; Li, C. M.; Song, H. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere 2015, 140, 26–33.CrossRefGoogle Scholar
  214. [214]
    Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381.CrossRefGoogle Scholar
  215. [215]
    Borole, A. P.; Aaron, D.; Hamilton, C. Y.; Tsouris, C. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Environ. Sci. Technol. 2010, 44, 2740–2745.CrossRefGoogle Scholar
  216. [216]
    Hidalgo, D.; Tommasi, T.; Velayutham, K.; Ruggeri, B. Long term testing of microbial fuel cells: Comparison of different anode materials. Bioresour. Technol. 2016, 219, 37–44.CrossRefGoogle Scholar
  217. [217]
    Gajda, I.; Greenman, J.; Santoro, C.; Serov, A.; Melhuish, C.; Atanassov, P.; Ieropoulos, I. A. Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy (Oxf) 2018, 144, 1073–1079.CrossRefGoogle Scholar
  218. [218]
    Marsili, E.; Rollefson, J. B.; Baron, D. B.; Hozalski, R. M.; Bond, D. R. Microbial biofilm voltammetry: Direct electrochemical characterization of catalytic electrode-attached biofilms. Appl. Environ. Microbiol. 2008, 74, 7329–7337.CrossRefGoogle Scholar
  219. [219]
    Liu, Y.; Harnisch, F.; Fricke, K.; Schröder, U.; Climent, V.; Feliu, J. M. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens. Bioelectron. 2010, 25, 2167–2171.CrossRefGoogle Scholar
  220. [220]
    Deng, L.; Guo, S. J.; Liu, Z. J.; Zhou, M.; Li, D.; Liu, L.; Li, G. P.; Wang, E. K.; Dong, S. J. To boost c-type cytochrome wire efficiency of electrogenic bacteria with Fe3O4/Au nanocomposites. Chem. Commun. 2010, 46, 7172–7174.CrossRefGoogle Scholar
  221. [221]
    Huang, Y. X.; Liu, X. W.; Xie, J. F.; Sheng, G. P.; Wang, G. Y.; Zhang, Y. Y.; Xu, A. W.; Yu, H. Q. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chem. Commun. 2011, 47, 5795–5797.CrossRefGoogle Scholar
  222. [222]
    Zou, L.; Qiao, Y.; Wu, X. S.; Li, C. M. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells. J. Power Sources 2016, 328, 143–150.CrossRefGoogle Scholar
  223. [223]
    Tanaka, K.; Tamamushi, R.; Ogawa, T. Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. J. Chem. Technol. Biotechnol. Biotechnol. 1985, 35, 191–197.CrossRefGoogle Scholar
  224. [224]
    Yokoo, R.; Hood, R. D.; Savage, D. F. Live-cell imaging of cyanobacteria. Photosynth. Res. 2015, 126, 33–46.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mohammed Mouhib
    • 1
  • Alessandra Antonucci
    • 1
  • Melania Reggente
    • 1
  • Amirmostafa Amirjani
    • 1
    • 2
  • Alice J. Gillen
    • 1
  • Ardemis A. Boghossian
    • 1
    Email author
  1. 1.Laboratory of NanoBiotechnology (LNB), Institute of Chemical Sciences and Engineering (ISIC)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Department of Mining and Metallurgical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations