Nano Research

, Volume 12, Issue 8, pp 1796–1803 | Cite as

Crystalline InGaZnO quaternary nanowires with superlattice structure for high-performance thin-film transistors

  • Fangzhou Li
  • SenPo Yip
  • Ruoting Dong
  • Ziyao Zhou
  • Changyong Lan
  • Xiaoguang Liang
  • Dapan Li
  • You Meng
  • Xiaolin Kang
  • Johnny C. HoEmail author
Research Article


Amorphous indium—gallium—zinc oxide (a-IGZO) materials have been widely explored for various thin-film transistor (TFT) applications; however, their device performance is still restricted by the intrinsic material issues especially due to their non-crystalline nature. In this study, highly crystalline superlattice-structured IGZO nanowires (NWs) with different Ga concentration are successfully fabricated by enhanced ambient-pressure chemical vapor deposition (CVD). The unique superlattice structure together with the optimal Ga concentration (i.e., 31 at.%) are found to effectively modulate the carrier concentration as well as efficiently suppress the oxygen vacancy formation for the superior NW device performance. In specific, the In1.8Ga1.8Zn24O7 NW field-effect transistor exhibit impressive device characteristics with the average electron mobility of ~ 110 cm2·V−1·s−1 and on/off current ratio of ~ 106. Importantly, these NWs can also be integrated into NW parallel arrays for the construction of high-performance TFT devices, in which their performance is comparable to many state-of-the-art IGZO TFTs. All these results can evidently indicate the promising potential of these crystalline superlattice-structured IGZO NWs for the practical utilization in next-generation metal-oxide TFT device technologies.


InGaZnO nanowires thin-film transistors superlattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is financially supported by the National Natural Science Foundation of China (No. 51672229), the General Research Fund (CityU 11211317) and the Theme-based Research (T42-103/16-N) of the Research Grants Council of Hong Kong SAR, China, and the Science Technology and Innovation Committee of Shenzhen Municipality (NO. JCYJ20170818095520778), and a grant from the Shenzhen Research Institute, City University of Hong Kong.

Supplementary material

12274_2019_2434_MOESM1_ESM.pdf (3 mb)
Crystalline InGaZnO quaternary nanowires with superlattice structure for high-performance thin-film transistors


  1. [1]
    Nomura, K.; Takagi, A.; Kamiya T.; Ohta, H.; Hirano, M.; Hosono, H. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 2006, 45, 4303.CrossRefGoogle Scholar
  2. [2]
    Liu, X.; Hu, H. H.; Ning, C.; Shang, G. L.; Yang, W.; Wang, K.; Lu, X. H.; Lee, W.; Wang, G.; Xue, J. S. et al. Investigation into sand mura effects of a-IGZO TFT LCDs. Microelectron. Reliab. 2016, 63, 148–151.CrossRefGoogle Scholar
  3. [3]
    Oh, H.; Cho, K.; Park, S.; Kim, S. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure. Microelectron. Eng. 2016, 159, 179–183.CrossRefGoogle Scholar
  4. [4]
    Wu, G. M.; Sahoo, A. K.; Lin, J. Y. Effects of e-beam deposited gate dielectric layers with atmospheric pressure plasma treatment for IGZO thin-film transistors. Surf. Coat. Technol. 2016, 306, 151–158.CrossRefGoogle Scholar
  5. [5]
    Lin, J. C.; Huang, B. R.; Yang, Y. K. IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors. Sens. Actuators, B: Chem. 2013, 184, 27–32.CrossRefGoogle Scholar
  6. [6]
    Seo, D. K.; Shin, S.; Cho, H. H.; Kong, B. H.; Whang, D. M.; Cho, H. K. Drastic improvement of oxide thermoelectric performance using thermal and plasma treatments of the InGaZnO thin films grown by sputtering. Acta Mater. 2011, 59, 6743–6750.CrossRefGoogle Scholar
  7. [7]
    Andrews, S. C.; Fardy, M. A.; Moore, M. C.; Aloni, S.; Zhang, M. J.; Radmilovic, V.; Yang, P. D. Atomic-level control of the thermoelectric properties in polytypoid nanowires. Chem. Sci. 2011, 2, 706–714.CrossRefGoogle Scholar
  8. [8]
    Zhou, H. T.; Li, L.; Chen, H. Y.; Guo, Z.; Jiao, S. J.; Sun, W. J. Realization of a fast-response flexible ultraviolet photodetector employing a metal-semiconductor-metal structure InGaZnO photodiode. RSC Adv. 2015, 5, 87993–87997.CrossRefGoogle Scholar
  9. [9]
    Tsao, S. W.; Chang, T. C.; Huang, S. Y.; Chen, M. C.; Chen, S. C.; Tsai, C. T.; Kuo, Y. J.; Chen, Y. C.; Wu, W. C. Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid-State Electron. 2010, 54, 1497–1499.CrossRefGoogle Scholar
  10. [10]
    Chiu, C. J.; Chang, S. P.; Chang, S. J. High-performance a-IGZO thin-film transistor using Ta2O5 gate dielectric. IEEE Electron Device Lett. 2010, 31, 1245–1247.Google Scholar
  11. [11]
    Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.CrossRefGoogle Scholar
  12. [12]
    Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.CrossRefGoogle Scholar
  13. [13]
    Wang, Y.; Liu, S. W.; Sun, X. W.; Zhao, J. L.; Goh, G. K. L.; Vu, Q. V.; Yu, H. Y. Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors. J. Sol-Gel Sci. Technol. 2010, 55, 322–327.CrossRefGoogle Scholar
  14. [14]
    Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272.CrossRefGoogle Scholar
  15. [15]
    Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Orita, M.; Hirano, M.; Suzuki, T.; Honjyo, C.; Ikuhara, Y.; Hosono, H. Growth mechanism for single-crystalline thin film of InGaO3(ZnO)5 by reactive solid-phase epitaxy. J. Appl. Phys. 2004, 95, 5532–5539.CrossRefGoogle Scholar
  16. [16]
    Ohta, H.; Nomura, K.; Orita, M.; Hirano, M.; Ueda, K.; Suzuki, T.; Ikuhara, Y.; Hosono, H. Single-crystalline films of the homologous series InGaO3(ZnO)m grown by reactive solid-phase epitaxy. Adv. Funct. Mater. 2003, 13, 139–144.CrossRefGoogle Scholar
  17. [17]
    Nomura, K.; Kamiya, T.; Ohta, H.; Ueda, K.; Hirano, M.; Hosono, H. Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films. Appl. Phys. Lett. 2004, 85, 1993–1995.CrossRefGoogle Scholar
  18. [18]
    Chen, H. G.; Lin, Y. S. Epitaxial growth of superlattice YbGaO3(ZnO)5 and InGaO3(ZnO)5 films by the combination of sputtering and reactive solid phase epitaxy. Thin Solid Films 2013, 545, 33–37.CrossRefGoogle Scholar
  19. [19]
    Guo, Y. J.; Van Bart, B.; Locquet, J. P.; Seo, J. W. Formation of crystalline InGaO3(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor. Nanotechnology 2015, 26, 495601.CrossRefGoogle Scholar
  20. [20]
    Wu, L. L.; Liu, F. W.; Chu, Z. Q.; Liang, Y.; Xu, H. Y.; Lu, H. Q.; Zhang, X. T.; Li, Q.; Hark, S. K. High-yield synthesis of In2–x, Gax, O3(ZnO)3 nanobelts with a planar superlattice structure. CrystEngComm 2010, 12, 2047–2050.CrossRefGoogle Scholar
  21. [21]
    Jayaswal, N.; Raman, A.; Kumar, N.; Singh, S. Design and analysis of electrostatic-charge plasma based dopingless IGZO vertical nanowire FET for ammonia gas sensing. Superlattices Microstruct. 2019, 125, 256–270.CrossRefGoogle Scholar
  22. [22]
    Felizco, J. C.; Uenuma, M.; Senaha, D.; Ishikawa, Y.; Uraoka, Y. Growth of InGaZnO nanowires via a Mo/Au catalyst from amorphous thin film. Appl. Phys. Lett. 2017, 111, 033104.CrossRefGoogle Scholar
  23. [23]
    Li, D. P.; Wang, G. Z.; Yang, Q. H.; Xie, X. Synthesis and photoluminescence of InGaO3(ZnO)m nanowires with perfect superlattice structure. J. Phys. Chem. C 2009, 113, 21512–21515.CrossRefGoogle Scholar
  24. [24]
    Han, N.; Yang, Z. X.; Wang, F. Y.; Yip, S.; Dong, G. F.; Liang, X. G.; Hung, T.; Chen, Y. F.; Ho, J. C. Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen. ACS Appl. Mater. Interfaces 2015, 7, 5591–5597.CrossRefGoogle Scholar
  25. [25]
    Han, N.; Wang, F. Y.; Yip, S.; Hou, J. J.; Xiu, F.; Shi, X. L.; Hui, A. T.; Hung, T.; Ho, J. C. GaAs nanowire Schottky barrier photovoltaics utilizing Au-Ga alloy catalytic tips. Appl. Phys. Lett. 2012, 101, 013105.CrossRefGoogle Scholar
  26. [26]
    Fang, M.; Han, N.; Wang, F. Y.; Yang, Z. X.; Yip, S.; Dong, G. F.; Hou, J. J.; Chueh, Y.; Ho, J. C. III-V nanowires: Synthesis, property manipulations, and device applications. J. Nanomater. 2014, 2014, 702859.CrossRefGoogle Scholar
  27. [27]
    Hui, A. T.; Wang, F. Y.; Han, N.; Yip, S.; Xiu, F.; Hou, J. J.; Yen, Y. T.; Hung, T.; Chueh, Y. L.; Ho, J. C. High-performance indium phosphide nanowires synthesized on amorphous substrates: From formation mechanism to optical and electrical transport measurements. J. Mater. Chem. 2012, 22, 10704–10708.CrossRefGoogle Scholar
  28. [28]
    Johnson, M. C.; Aloni, S.; McCready, D. E.; Bourret-Courchesne, E. D. Controlled vapor—liquid—solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport. Cryst. Growth Des. 2006, 6, 1936–1941.CrossRefGoogle Scholar
  29. [29]
    Vomiero, A.; Ferroni, M.; Comini, E.; Faglia, G.; Sberveglieri, G. Insight into the formation mechanism of one-dimensional indium oxide wires. Cryst. Growth Des. 2010, 10, 140–145.CrossRefGoogle Scholar
  30. [30]
    Na, C. W.; Bae, S. Y.; Park, J. Short-period superlattice structure of Sn-doped In2O3(ZnO)4 and In2O3(ZnO)5 nanowires. J. Phys. Chem. B 2005, 109, 12785–12790.CrossRefGoogle Scholar
  31. [31]
    Wu, L. L.; Liang, Y.; Liu, F. W.; Lu, H. Q.; Xu, H. Y.; Zhang, X. T.; Hark, S. Preparation of ZnO/In2O3(ZnO)n heterostructure nanobelts. CrystEngComm 2010, 12, 4152–4155.CrossRefGoogle Scholar
  32. [32]
    Jie, J. S.; Wang, G. Z.; Han, X. H.; Hou, J. G. Synthesis and characterization of ZnO:In nanowires with superlattice structure. J. Phys. Chem. B 2004, 108, 17027–17031.CrossRefGoogle Scholar
  33. [33]
    Huang, D. L.; Wu, L. L.; Zhang, X. T. Size-dependent InAlO3(ZnO)m nanowires with a perfect superlattice structure. J. Phys. Chem. C 2010, 114, 11783–11786.CrossRefGoogle Scholar
  34. [34]
    Cho, S. W.; Kim, J. H.; Shin, S.; Cho, H. H.; Cho, H. K. All-solution-processed InGaO3(ZnO)m thin films with layered structure. J. Nanomater. 2013, 2013, 909786.Google Scholar
  35. [35]
    Seo, D. K.; Kong, B. H.; Cho, H. K. Composition controlled superlattice InGaO3(ZnO)m thin films by thickness of ZnO buffer layers and thermal treatment. Cryst. Growth Des. 2010, 10, 4638–4641.CrossRefGoogle Scholar
  36. [36]
    Kamiya, T.; Takeda, Y.; Nomura, K.; Ohta, H.; Yanagi, H.; Hirano, M.; Hosono, H. Self-adjusted, three-dimensional lattice-matched buffer layer for growing ZnO epitaxial film: Homologous series layered oxide, InGaO3(ZnO)5. Cryst. Growth Des. 2006, 6, 2451–2456.CrossRefGoogle Scholar
  37. [37]
    Wu, L. L.; Li, Q.; Zhang, X. T.; Zhai, T. Y.; Bando, Y.; Golberg, D. Enhanced field emission performance of Ga-doped In2O3(ZnO)3 superlattice nanobelts. J. Phys. Chem. C 2011, 115, 24564–24568.CrossRefGoogle Scholar
  38. [38]
    Keem, K.; Jeong, D. Y.; Kim, S.; Lee, M. S.; Yeo, I. S.; Chung, U. I.; Moon, J. T. Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors. Nano Lett. 2006, 6, 1454–1458.CrossRefGoogle Scholar
  39. [39]
    Yang, Z. X.; Wang, F. Y.; Han, N.; Lin, H.; Cheung, H. Y.; Fang, M.; Yip, S.; Hung, T.; Wong, C. Y.; Ho, J. C. Crystalline GaSb nanowires synthesized on amorphous substrates: From the formation mechanism to p-channel transistor applications. ACSAppl. Mater. Interfaces 2013, 5, 10946–10952.CrossRefGoogle Scholar
  40. [40]
    Yang, Z. X.; Han, N.; Fang, M.; Lin, H.; Cheung, H. Y.; Yip, S.; Wang, E. J.; Hung, T.; Wong, C. Y.; Ho, J. C. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat. Commun. 2014, 5, 5249.CrossRefGoogle Scholar
  41. [41]
    Yang, Z. X.; Yip, S.; Li, D. P.; Han, N.; Dong, G. F.; Liang, X. G.; Shu, L.; Hung, T. F.; Mo, X. L.; Ho, J. C. Approaching the hole mobility limit of GaSb nanowires. ACS Nano 2015, 9, 9268–9275.CrossRefGoogle Scholar
  42. [42]
    Li, W. Q.; Liao, L.; Xiao, X. H.; Zhao, X. Y.; Dai, Z. G; Guo, S. S.; Wu, W.; Shi, Y.; Xu, J. X.; Ren, F. et al. Modulating the threshold voltage of oxide nanowire field-effect transistors by a Ga+ ion beam. Nano Res. 2014, 7, 1691–1698.CrossRefGoogle Scholar
  43. [43]
    Rao, C. N. R.; Kulkarni, G U.; Thomas, P. J.; Edwards, P. P. Size-dependent chemistry: Properties of nanocrystals. Chem. Eur. J. 2002, 8, 28–35.CrossRefGoogle Scholar
  44. [44]
    Volokitin, Y.; Sinzig, J.; De Jongh, L. J.; Schmid, G.; Vargaftik, M. N.; Moiseevi, I. I. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature 1996, 384, 621–623.CrossRefGoogle Scholar
  45. [45]
    Park, G. C.; Hwang, S. M.; Choi, J. H.; Kwon, Y. H.; Cho, H. K.; Kim, S. W.; Lim, J. H.; Joo, J. Effects of In or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process. Phys. Status Solidi A 2013, 210, 1552–1556.CrossRefGoogle Scholar
  46. [46]
    Li, T. C.; Han, C. F.; Kuan, T. H.; Lin, J. F. Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence. Opt. Mater. Express 2016, 6, 343–366.CrossRefGoogle Scholar
  47. [47]
    Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010, 2, 15–22.CrossRefGoogle Scholar
  48. [48]
    Jeong, S.; Ha, Y. G.; Moon, J.; Facchetti, A.; Marks, T. J. Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 2010, 22, 1346–1350.CrossRefGoogle Scholar
  49. [49]
    Zhou, Z. Y.; Lan, C. Y.; Yip, S.; Wei, R. J.; Li, D. P.; Shu, L.; Ho, J. C. Towards high-mobility In2xGa2−2xO3 nanowire field-effect transistors. Nano Res. 2018, 11, 5935–5945.CrossRefGoogle Scholar
  50. [50]
    Parthiban, S.; Kwon, J. Y. Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor. J. Mater. Res. 2014, 29, 1585–1596.CrossRefGoogle Scholar
  51. [51]
    Lei, B.; Li, C.; Zhang, D.; Tang, T.; Zhou, C. Tuning electronic properties of In2O3 nanowires by doping control. Appl. Phys. A 2004, 79, 439–442.CrossRefGoogle Scholar
  52. [52]
    Zhang, D. H.; Ma, H. L. Scattering mechanisms of charge carriers in transparent conducting oxide films. Appl. Phys. A 1996, 62, 487–492.CrossRefGoogle Scholar
  53. [53]
    Hou, J. J.; Han, N.; Wang, F. Y.; Xiu, F.; Yip, S.; Hui, A. T.; Hung, T.; Ho, J. C. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. ACS Nano 2012, 6, 3624–3630.CrossRefGoogle Scholar
  54. [54]
    Han, N.; Wang, F. Y.; Hui, A. T; Hou, J. J.; Shan, G. C.; Xiu, F.; Hung, T.; Ho, J. C. Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates. Nanotechnology 2011, 22, 285607.CrossRefGoogle Scholar
  55. [55]
    Han, N.; Hui, A. T.; Wang, F. Y.; Hou, J. J.; Xiu, F.; Hung, T.; Ho, J. C. Crystal phase and growth orientation dependence of GaAs nanowires on NixGay seeds via vapor-solid-solid mechanism. Appl. Phys. Lett. 2011, 99, 083114.CrossRefGoogle Scholar
  56. [56]
    Zou, X. M.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z.; Xiong, Q. H. et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. ACS Nano 2013, 7, 804–810.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fangzhou Li
    • 1
  • SenPo Yip
    • 1
    • 2
    • 3
  • Ruoting Dong
    • 1
    • 2
  • Ziyao Zhou
    • 1
    • 2
  • Changyong Lan
    • 1
  • Xiaoguang Liang
    • 1
  • Dapan Li
    • 1
  • You Meng
    • 1
  • Xiaolin Kang
    • 1
  • Johnny C. Ho
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Materials Science and EngineeringCity University of Hong KongHong KongChina
  2. 2.Shenzhen Research InstituteCity University of Hong KongShenzhenChina
  3. 3.State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongHong KongChina
  4. 4.Centre for Functional PhotonicsCity University of Hong KongHong KongChina

Personalised recommendations