Advertisement

One-nanometer-thick platinum-based nanowires with controllable surface structures

  • Xiaokun Fan
  • Shuiping Luo
  • Xixia Zhao
  • Xiaotong Wu
  • Zhishan Luo
  • Min Tang
  • Wen Chen
  • Xing Song
  • Zewei QuanEmail author
Research Article
  • 77 Downloads

Abstract

Pt-based ultrathin nanowires (NWs) are considered as one of the most intriguing catalysts for fuel cells. However, the delicate controllability of surface structure of ultrathin NWs to regulate their catalytic performances is still a challenge. Here, two kinds of one-nanometer-thick Pt-based NWs with smooth surfaces (S-NWs) and rough surfaces (R-NWs) are demonstrated, in which the combined use of hexadecyltrimethylammonium bromide and oleylamine plays an essential role, as they could form soft-templates to direct the growth of NWs. Due to its high-density of low-coordinated sites on the surface, Pt-based R-NWs exhibit higher oxygen reduction reaction (ORR) activities but lower stabilities than corresponding S-NWs. Notably, Pt0.78Ni0.22 R-NWs possess the highest mass activity (1.07 A·mgPt−1) and specific activity (1.02 mA·cm−2) among all Pt-based NWs. After 10,000 sweeping cycles, the mass activity still exhibits 5.7-fold enhancement compared to the corresponding commercial Pt/C. This work presents a new approach to delicately control the surface structure of ultrathin Pt-based NWs as advanced ORR catalysts.

Keywords

platinum ultrathin nanowire surface structure oxygen reduction reaction electrtocatalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 51772142), Shenzhen Science and Technology Innovation Committee (Nos. KQJSCX20170328155428476 and KQTD2016053019134356), Development and Reform Commission of Shenzhen Municipality (Novel Nanomaterial Discipline Construction Plan), and the China Postdoctoral Science Foundation (No. 2018M641633).

Supplementary material

12274_2019_2428_MOESM1_ESM.pdf (18.2 mb)
One-nanometer-thick platinum-based nanowires with controllable surface structures

References

  1. [1]
    Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.CrossRefGoogle Scholar
  2. [2]
    Greeley, J; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J; Chorkendorff, I; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.CrossRefGoogle Scholar
  3. [3]
    Zhang, J.; Fang, J. Y. A general strategy for preparation of Pt 3D-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 2009, 131, 18543–18547.CrossRefGoogle Scholar
  4. [4]
    Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.CrossRefGoogle Scholar
  5. [5]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  6. [6]
    Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.CrossRefGoogle Scholar
  7. [7]
    Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867–1877.CrossRefGoogle Scholar
  8. [8]
    Quan, Z. W.; Wang, Y. X.; Fang, J. Y. Correction to high-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 1050.CrossRefGoogle Scholar
  9. [9]
    Li, Q.; Sun, S. H. Recent advances in the organic solution phase synthesis of metal nanoparticles and their electrocatalysis for energy conversion reactions. Nano Energy 2016, 29, 178–197.CrossRefGoogle Scholar
  10. [10]
    Zhang, L.; Niu, W. X.; Xu, G. B. Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today 2012, 7, 586–605.CrossRefGoogle Scholar
  11. [11]
    Zhang, N.; Feng, Y. G.; Zhu, X.; Guo, S. J.; Guo, J.; Huang, X. Q. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Adv. Mater. 2017, 29, 1603774.CrossRefGoogle Scholar
  12. [12]
    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.CrossRefGoogle Scholar
  13. [13]
    Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.CrossRefGoogle Scholar
  14. [14]
    Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.CrossRefGoogle Scholar
  15. [15]
    Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 2017, 3, e1601705.CrossRefGoogle Scholar
  16. [16]
    Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.CrossRefGoogle Scholar
  17. [17]
    Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 2015, 15, 2468–2473.CrossRefGoogle Scholar
  18. [18]
    Guo, S. J.; Dong, S. J.; Wang, E. K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547–555.CrossRefGoogle Scholar
  19. [19]
    Zhang, W. Y.; Yang, Y.; Huang, B. L.; Lv, F.; Wang, K.; Li, N.; Luo, M. C.; Chao, Y. G.; Li, Y. J.; Sun, Y. J. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.CrossRefGoogle Scholar
  20. [20]
    Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem. 2015, 127, 3868–3872.CrossRefGoogle Scholar
  21. [21]
    Koenigsmann, C.; Wong, S. S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 1161–1176.CrossRefGoogle Scholar
  22. [22]
    Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.CrossRefGoogle Scholar
  23. [23]
    Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng, Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 2017, 139, 8152–8159.CrossRefGoogle Scholar
  24. [24]
    Koenigsmann, C.; Zhou, W. P.; Adzic, R. R.; Sutter, E.; Wong, S. S. Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires. Nano Lett. 2010, 10, 2806–2811.CrossRefGoogle Scholar
  25. [25]
    Fiorentini, V.; Methfessel, M.; Scheffler, M. Reconstruction mechanism of fcc transition metal (001) surfaces. Phys. Rev. Lett. 1993, 71, 1051–1054.CrossRefGoogle Scholar
  26. [26]
    Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159–16167.CrossRefGoogle Scholar
  27. [27]
    Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.CrossRefGoogle Scholar
  28. [28]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  29. [29]
    Jiang, K. Z.; Shao, Q.; Zhao, D. D.; Bu, L. Z.; Guo, J.; Huang, X. Q. Phase and composition tuning of 1D platinum-nickel nanostructures for highly efficient electrocatalysis. Adv. Funct. Mater. 2017, 27, 1700830.CrossRefGoogle Scholar
  30. [30]
    Li, H. H.; Ma, S. Y.; Fu, Q. Q.; Liu, X. J.; Wu, L.; Yu, S. H. Scalable bromide-triggered synthesis of Pd@Pt core-shell ultrathin nanowires with enhanced electrocatalytic performance toward oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 7862–7868.CrossRefGoogle Scholar
  31. [31]
    Liu, H. Q.; An, W.; Li, Y. Y.; Frenkel, A. I.; Sasaki, K.; Koenigsmann, C.; Su, D.; Anderson, R. M.; Crooks, R. M.; Adzic, R. R. et al. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 12597–12609.CrossRefGoogle Scholar
  32. [32]
    Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.CrossRefGoogle Scholar
  33. [33]
    Yogamalar, R.; Srinivasan, R.; Vinu, A.; Ariga, K.; Bose, A. C. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 2009, 149, 1919–1923.CrossRefGoogle Scholar
  34. [34]
    Deshpande, S.; Patil, S.; Kuchibhatla, S. V.; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005, 87, 133113.CrossRefGoogle Scholar
  35. [35]
    Tsunekawa, S.; Ishikawa, K.; Li, Z. Q.; Kawazoe, Y.; Kasuya, A. Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 2000, 85, 3440–3443.CrossRefGoogle Scholar
  36. [36]
    Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 2010, 10, 638–644.CrossRefGoogle Scholar
  37. [37]
    Wang, C.; Hou, Y. L.; Kim, J.; Sun, S. H. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem. 2007, 119, 6449–6451.CrossRefGoogle Scholar
  38. [38]
    Guo, S. J.; Zhang, S.; Sun, X. L.; Sun, S. H. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc. 2011, 133, 15354–15357.CrossRefGoogle Scholar
  39. [39]
    Song, Y. J.; Garcia, R. M.; Dorin, R. M.; Wang, H. R.; Qiu, Y.; Coker, E. N.; Steen, W. A.; Miller, J. E.; Shelnutt, J. A. Synthesis of platinum nanowire networks using a soft template. Nano Lett. 2007, 7, 3650–3655.CrossRefGoogle Scholar
  40. [40]
    Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.CrossRefGoogle Scholar
  41. [41]
    Wang, Y. W.; He, J. T.; Liu, C. C.; Chong, W. H.; Chen, H. Y. Thermodynamics versus kinetics in nanosynthesis. Angew. Chem., Int. Ed. 2015, 54, 2022–2051.CrossRefGoogle Scholar
  42. [42]
    Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.CrossRefGoogle Scholar
  43. [43]
    Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.CrossRefGoogle Scholar
  44. [44]
    Lee Penn, R.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971.CrossRefGoogle Scholar
  45. [45]
    Xia, X. H.; Xie, S. F.; Liu, M. C.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xia, Y. N. On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proc. Natl. Acad. Sci. USA 2013, 110, 6669–6673.CrossRefGoogle Scholar
  46. [46]
    Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.CrossRefGoogle Scholar
  47. [47]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefGoogle Scholar
  48. [48]
    Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaokun Fan
    • 1
    • 2
  • Shuiping Luo
    • 1
  • Xixia Zhao
    • 1
  • Xiaotong Wu
    • 1
    • 2
  • Zhishan Luo
    • 1
  • Min Tang
    • 1
  • Wen Chen
    • 1
  • Xing Song
    • 1
  • Zewei Quan
    • 1
    Email author
  1. 1.Department of ChemistrySouthern University of Science and Technology (SUSTech)ShenzhenChina
  2. 2.School of Chemical Biology and Biotechnology, Shenzhen Graduate SchoolPeking UniversityShenzhenChina

Personalised recommendations