Advertisement

Two-photon AIE probe conjugated theranostic nanoparticles for tumor bioimaging and pH-sensitive drug delivery

  • Boxuan Ma
  • Weihua Zhuang
  • Haiyang He
  • Xin Su
  • Tao Yu
  • Jun Hu
  • Li YangEmail author
  • Gaocan LiEmail author
  • Yunbing Wang
Research Article
  • 35 Downloads

Abstract

Nanoparticles armed with chemotherapy drug and fluorescence probe have become an effective anticancer strategy for their advantages in cancer diagnosis and treatment. However, fluorophore for diagnostic medicine with deep penetration depth and high resolution are still very rare, while rational designs are also required to improve the tumor retention and target-site drug delivery. Herein, a two-photon fluorophore with aggregation-induced emission and large two-photon absorption cross-section has been designed for two-photon bioimaging, and a novel theranostic nanoplatform is also constructed based on doxorubicin and the two-photon fluorophore conjugated copolymer, P(TPMA-co-AEMA)-PEI(DA)-Blink-PEG (PAEEBlink-DA). The micelles maintain a “stealth” property during blood circulation and is activated in the acidic tumor microenvironment, which triggers the charge-conversion and results in enhanced micellar internalization. Meanwhile, PAEMA chains can convert from hydrophobicity to hydrophilicity with accelerated drug release and particle size expansion. The enlarged particle size would potentially extend the retention time of these micelles. Moreover, a great AIE active two-photon bioimaging with tissue penetration depth up to 150 µm is observed and the in vivo biodistribution of nanoparticles can be traced. The in vivo antitumor results further indicate the obvious reduction of adverse effect and enhanced treatment effect of these micelles, proving that these PAEEBlink-DA micelles would be a potential candidate for tumor theranostic applications.

Keywords

polymeric micelle two-photon aggregation-induced emission pH-sensitive charge conversion tumor retention 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 21502129), the National 111 Project of Introducing Talents of Discipline to Universities (No. B16033), China Postdoctoral Science Foundation Funded Project (Nos. 2017M612956 and 2018T110969), the Key Technology Support Program of Sichuan Province (No. 2016SZ0004), and the State Key Laboratory of Polymer Materials Engineering (No. sklpme2018-3-05). We are grateful for the help of Mr. Chenghui Li (Analytical & Testing Center, Sichuan University) taking laser scanning confocal images.

Supplementary material

12274_2019_2426_MOESM1_ESM.pdf (3.2 mb)
Two-photon AIE probe conjugated theranostic nanoparticles for tumor bioimaging and pH-sensitive drug delivery

References

  1. [1]
    Ni, Y.; Wu, J. S. Far-red and near infrared bodipy dyes: Synthesis and applications for fluorescent pH probes and bio-imaging. Org. Biomol. Chem. 2014, 12, 3774–3791.CrossRefGoogle Scholar
  2. [2]
    Keeble, J.; Goh, C. C.; Wang, Y. L.; Weninger, W.; Ng, L. G. Intravital multiphoton imaging of immune cells. In Advances in Bio-Imaging: From Physics to Signal Understanding Issues. Loménie, N.; Racoceanu, D.; Gouaillard, A., Eds.; Springer: Berlin, Heidelberg, 2012; pp 3–16.CrossRefGoogle Scholar
  3. [3]
    Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.CrossRefGoogle Scholar
  4. [4]
    Reisch, A.; Klymchenko, A. S. Fluorescent polymer nanoparticles based on dyes: Seeking brighter tools for bioimaging. Small 2016, 12, 1968–1992.CrossRefGoogle Scholar
  5. [5]
    Yuan, Y. Y.; Kwok, R. T. K.; Tang, B. Z.; Liu, B. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem. Soc. 2014, 136, 2546–2554.CrossRefGoogle Scholar
  6. [6]
    Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B. et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.Google Scholar
  7. [7]
    Jayaram, D. T.; Ramos-Romero, S.; Shankar, B. H.; Garrido, C.; Rubio, N.; Sanchez-Cid, L.; Gómez, S. B.; Blanco, J.; Ramaiah, D. In vitro and in vivo demonstration of photodynamic activity and cytoplasm imaging through TPE nanoparticles. ACS Chem. Biol. 2016, 11, 104–112.CrossRefGoogle Scholar
  8. [8]
    Theer, P.; Hasan, M. T.; Denk, W. Two-photon imaging to a depth of 1,000 µm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 2003, 28, 1022–1024.CrossRefGoogle Scholar
  9. [9]
    Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940.CrossRefGoogle Scholar
  10. [10]
    Jiang, M. J.; Gu, X. G.; Lam, J. W. Y.; Zhang, Y. L.; Kwok, R. T. K.; Wong, K. S.; Tang, B. Z. Two-photon AIE bio-probe with large stokes shift for specific imaging of lipid droplets. Chem. Sci. 2017, 8, 5440–5446.CrossRefGoogle Scholar
  11. [11]
    Roberts, W. G.; Palade, G. E. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 1995, 108, 2369–2379.Google Scholar
  12. [12]
    Luo, Y. P.; Jiang, F.; Cole, T. B.; Hradil, V. P.; Reuter, D.; Chakravartty, A.; Albert, D. H.; Davidsen, S. K.; Cox, B. F.; McKeegan, E. M. et al. A novel multi-targeted tyrosine kinase inhibitor, linifanib (ABT-869), produces functional and structural changes in tumor vasculature in an orthotopic rat glioma model. Cancer Chemother. Pharmacol. 2012, 69, 911–921.CrossRefGoogle Scholar
  13. [13]
    Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.CrossRefGoogle Scholar
  14. [14]
    Wang, D.; Su, H. F.; Kwok, R. T. K.; Hu, X. L.; Zou, H.; Luo, Q. X.; Lee, M. M. S.; Xu, W. H.; Lam, J. W. Y.; Tang, B. Z. Rational design of a water-soluble NIR AIEgen, and its application in ultrafast wash-free cellular imaging and photodynamic cancer cell ablation. Chem. Sci. 2018, 9, 3685–3693.CrossRefGoogle Scholar
  15. [15]
    Ge, Z. S.; Liu, S. Y. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289–7325.CrossRefGoogle Scholar
  16. [16]
    Miyata, K.; Christie, R. J.; Kataoka, K. Polymeric micelles for nano-scale drug delivery. React. Funct. Polym. 2011, 71, 227–234.CrossRefGoogle Scholar
  17. [17]
    Zhao, J. Y.; Zhong, D.; Zhou, S. B. NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 2018, 6, 349–365.CrossRefGoogle Scholar
  18. [18]
    Wang, Y.; Wei, G. Q.; Zhang, X. B.; Huang, X. H.; Zhao J. Y.; Guo, X.; Zhou, S. B. Multistage targeting strategy using magnetic composite nanoparticles for synergism of photothermal therapy and chemotherapy. Small 2014, 14, 1702994.CrossRefGoogle Scholar
  19. [19]
    Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136–151.CrossRefGoogle Scholar
  20. [20]
    Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.CrossRefGoogle Scholar
  21. [21]
    Stewart, M. P.; Sharei, A.; Ding, X. Y.; Sahay, G.; Langer, R.; Jensen, K. F. In vitro and ex vivo strategies for intracellular delivery. Nature 2016, 538, 183–192.CrossRefGoogle Scholar
  22. [22]
    Sanhai, W. R.; Sakamoto, J. H.; Canady, R.; Ferrari, M. Seven challenges for nanomedicine. Nat. Nanotechnol. 2008, 3, 242–244.CrossRefGoogle Scholar
  23. [23]
    Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2016, 17, 20–37.CrossRefGoogle Scholar
  24. [24]
    Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826–2885.CrossRefGoogle Scholar
  25. [25]
    Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.CrossRefGoogle Scholar
  26. [26]
    Sugihara, S.; Blanazs, A.; Armes, S. P.; Ryan, A. J.; Lewis, A. L. Aqueous dispersion polymerization: A new paradigm for in situ block copolymer self-assembly in concentrated solution. J. Am. Chem. Soc. 2011, 133, 15707–15713.CrossRefGoogle Scholar
  27. [27]
    Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340–7364.CrossRefGoogle Scholar
  28. [28]
    Zhang, Y.; Cai, K. M.; Li, C.; Guo, Q.; Chen, Q. J.; He, X.; Liu, L. S.; Zhang, Y. J.; Lu, Y. F.; Chen, X. L. et al. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 2018, 18, 1908–1915.CrossRefGoogle Scholar
  29. [29]
    Guo, X.; Wei, X.; Jing, Y. T.; Zhou, S. B. Size changeable nanocarriers with nuclear targeting for effectively overcoming multidrug resistance in cancer therapy. Adv. Mater. 2015, 27, 6450–6456.CrossRefGoogle Scholar
  30. [30]
    Guo, X.; Shi, C. L.; Yang, G.; Wang, J.; Cai, Z. H.; Zhou, S. B. Dual-responsive polymer micelles for target-cell-specific anticancer drug delivery. Chem. Mater. 2014, 26, 4405–4418.CrossRefGoogle Scholar
  31. [31]
    Huang, Y.; Tang, Z. H.; Zhang, X. F.; Yu, H. Y.; Sun, H.; Pang, X.; Chen, X. S. pH-triggered charge-reversal polypeptide nanoparticles for cisplatin delivery: Preparation and in vitro evaluation. Biomacromolecules 2013, 14, 2023–2032.CrossRefGoogle Scholar
  32. [32]
    Liu, G. Y.; Li, M.; Zhu, C. S.; Jin, Q.; Zhang, Z. C.; Ji, J. Charge-conversional and pH-sensitive PEGylated polymeric micelles as efficient nanocarriers for drug delivery. Macromol. Biosci. 2014, 14, 1280–1290.CrossRefGoogle Scholar
  33. [33]
    Xu, P. S.; Van Kirk, E. A.; Zhan, Y. H.; Murdoch, W. J.; Radosz, M.; Shen, Y. Q. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew. Chem. 2007, 119, 5087–5090.CrossRefGoogle Scholar
  34. [34]
    Lee, E. S.; Gao, Z. G.; Bae, Y. H. Recent progress in tumor pH targeting nanotechnology. J. Control. Release. 2008, 132, 164–170.CrossRefGoogle Scholar
  35. [35]
    Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.CrossRefGoogle Scholar
  36. [36]
    Hu, J. M.; Zhang, G. Y.; Ge, Z. S.; Liu, S. Y. Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications. Prog. Polym. Sci. 2014, 39, 1096–1143.CrossRefGoogle Scholar
  37. [37]
    Lee, E. S.; Na, K.; Bae, Y. H. Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 2005, 5, 325–329.CrossRefGoogle Scholar
  38. [38]
    Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 2012, 74, 69–86.CrossRefGoogle Scholar
  39. [39]
    Gu, J. X.; Cheng, W. P.; Liu, J. G.; Lo, S. Y.; Smith, D.; Qu, X. Z.; Yang, Z. Z. pH-triggered reversible “stealth” polycationic micelles. Biomacromolecules 2008, 9, 255–262.CrossRefGoogle Scholar
  40. [40]
    Yoshio, O.; Reiko, A.; Toyoki, K. Reaction of the azomethine moiety buried in bilayer membranes. Bull. Chem. Soc. Jpn. 1983, 56, 802–808.CrossRefGoogle Scholar
  41. [41]
    Ma, B. X.; Zhuang, W. H.; Wang, Y. N.; Luo, R. F.; Wang, Y. B. pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy. Acta Biomater. 2018, 70, 186–196.CrossRefGoogle Scholar
  42. [42]
    Zhou, K. J.; Wang, Y. G.; Huang, X. N.; Luby-Phelps, K.; Sumer, B. D.; Gao, J. M. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem., Int. Ed. 2011, 50, 6109–6114.CrossRefGoogle Scholar
  43. [43]
    Zhuang, W. H.; Xu, Y. Y.; Li, G. C.; Hu, J.; Ma, B. X.; Yu, T.; Su, X.; Wang, Y. B. Redox and pH dual-responsive polymeric micelles with aggregation-induced emission feature for cellular imaging and chemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 18489–18498.CrossRefGoogle Scholar
  44. [44]
    Hu, J.; Zhuang, W. H.; Ma, B. X.; Su, X.; Yu, T.; Li, G. C.; Hu, Y. F.; Wang, Y. B. Redox-responsive biomimetic polymeric micelle for simultaneous anticancer drug delivery and aggregation-induced emission active imaging. Bioconjugate Chem. 2018, 29, 1897–1910.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Boxuan Ma
    • 1
  • Weihua Zhuang
    • 1
  • Haiyang He
    • 1
  • Xin Su
    • 1
  • Tao Yu
    • 1
  • Jun Hu
    • 1
  • Li Yang
    • 1
    Email author
  • Gaocan Li
    • 1
    Email author
  • Yunbing Wang
    • 1
  1. 1.National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina

Personalised recommendations