Nano Research

, Volume 12, Issue 7, pp 1697–1702 | Cite as

Nanoscale imaging of electric pathways in epitaxial graphene nanoribbons

  • Johannes Aprojanz
  • Pantelis Bampoulis
  • Alexei A. Zakharov
  • Harold J. W. Zandvliet
  • Christoph TegenkampEmail author
Research Article


Graphene nanoribbons (GNRs) are considered as major building blocks in future carbon-based electronics. The electronic performance of graphene nanostructures is essentially influenced and determined by their edge termination and their supporting substrate. In particular, semi-conducting, as well as metallic GNRs, can be fabricated by choosing the proper template which is favorable for device architecture designs. This study highlights the impact of microscopic details of the environment of the GNRs on the charge transport in GNRs. By means of lateral force, conductive atomic force and nanoprobe measurements, we explore the charge propagation in both zig-zag and armchair GNRs epitaxially grown on SiC templates. We directly image transport channels on the nanoscale and identify SiC substrate steps and nano-instabilities of SiC facets as dominant charge scattering centers.


sidewall graphene nanoribbons nanoprobe conductive-AFM nanoscale transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



J. A. and C. T. gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (Te386/12-1). P. B. and H. J. W. Z. thank the Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO) for financial support. A. Z. acknowledges the Swedish Research Council (Vetenskapsradet) for the Tailspin project support.

Supplementary material

12274_2019_2425_MOESM1_ESM.pdf (1.8 mb)
Nanoscale imaging of electric pathways in epitaxial graphene nanoribbons


  1. [1]
    de Heer, W. A.; Berger, C.; Ruan, M.; Sprinkle, M.; Li, X. B.; Hu, Y. K.; Zhang, B. Q.; Hankinson, J.; Conrad, E. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. USA 2011, 108, 16900–16905.CrossRefGoogle Scholar
  2. [2]
    Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 2009, 8, 203–207.CrossRefGoogle Scholar
  3. [3]
    Kruskopf, M.; Pakdehi, D. M.; Pierz, K.; Wundrack, S.; Stosch, R.; Dziomba, T.; Götz, M.; Baringhaus, J.; Aprojanz, J.; Tegenkamp, C. et al. Comeback of epitaxial graphene for electronics: Large-area growth of bilayer-free graphene on SiC. 2D Mater. 2016, 3, 041002.CrossRefGoogle Scholar
  4. [4]
    Yang, Y. F.; Cheng, G. J.; Mende, P.; Calizo, I. G.; Feenstra, R. M.; Chuang, C.; Liu, C. W.; Liu, C. I.; Jones, G. R.; Hight Walker, A. R. et al. Epitaxial graphene homogeneity and quantum Hall effect in millimeter-scale devices. Carbon 2017, 115, 229–236.CrossRefGoogle Scholar
  5. [5]
    Virojanadara, C.; Yakimova, R.; Zakharov, A. A.; Johansson, L. I. Large homogeneous mono-/bi-layer graphene on 6H-SiC(0001) and buffer layer elimination. J. Phys. D: Appl. Phys. 2010, 43, 374010.CrossRefGoogle Scholar
  6. [6]
    Sprinkle, M.; Ruan, M.; Hu, Y.; Hankinson, J.; Rubio-Roy, M.; Zhang, B.; Wu, X.; Berger, C.; de Heer, W. A. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 2010, 5, 727–731.CrossRefGoogle Scholar
  7. [7]
    Baringhaus, J.; Ruan, M.; Edler, F.; Tejeda, A.; Sicot, M.; Taleb-Ibrahimi, A.; Li, A. P.; Jiang, Z. G.; Conrad, E. H.; Berger, C. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 2014, 506, 349–354.CrossRefGoogle Scholar
  8. [8]
    Zakharov, A. A.; Vinogradov, N. A.; Aprojanz, J.; Nguyen, T. T. N.; Tegenkamp, C.; Struzzi, C.; Iakimov, T.; Yakimova, R.; Jokubavicius, V. Wafer scale growth and characterization of edge specific graphene nanoribbons for nanoelectronics. ACS Appl. Nano Mater. 2019, 2, 156–162.CrossRefGoogle Scholar
  9. [9]
    Aprojanz, J.; Power, S. R.; Bampoulis, P.; Roche, S.; Jauho, A. P.; Zandvliet, H. J. W.; Zakharov, A. A.; Tegenkamp, C. Ballistic tracks in graphene nanoribbons. Nat. Commun. 2018, 9, 4426.CrossRefGoogle Scholar
  10. [10]
    Ienaga, K.; Iimori, T.; Yaji, K.; Miyamachi, T.; Nakashima, S.; Takahashi, Y.; Fukuma, K.; Hayashi, S.; Kajiwara, T.; Visikovskiy, A. et al. Modulation of electron-phonon coupling in one-dimensionally nanorippled graphene on a macrofacet of 6H-SiC. Nano Lett. 2017, 17, 3527–3532.CrossRefGoogle Scholar
  11. [11]
    Palacio, I.; Celis, A.; Nair, M. N.; Gloter, A.; Zobelli, A.; Sicot, M.; Malterre, D.; Nevius, M. S.; de Heer, W. A.; Berger, C. et al. Atomic structure of epitaxial graphene sidewall nanoribbons: Flat graphene, miniribbons, and the confinement gap. Nano Lett. 2015, 15, 182–189.CrossRefGoogle Scholar
  12. [12]
    Bampoulis, P.; van Bremen, R.; Yao, Q. R.; Poelsema, B.; Zandvliet, H. J. W.; Sotthewes, K. Defect dominated charge transport and fermi level pinning in MoS2/metal contacts. ACS Appl. Mater. Interfaces 2017, 9, 19278–19286.CrossRefGoogle Scholar
  13. [13]
    Bampoulis, P.; Sotthewes, K.; Siekman, M. H.; Zandvliet, H. J. W. Local conduction in MoxW1−xSe2: The role of stacking faults, defects, and alloying. ACS Appl. Mater. Interfaces 2018, 10, 13218–13225.CrossRefGoogle Scholar
  14. [14]
    Nowakowski, K.; Zandvliet, H. J. W.; Bampoulis, P. Barrier inhomogeneities in atomic contacts on WS2. Nano Lett. 2019, 19, 1190–1196.CrossRefGoogle Scholar
  15. [15]
    Jokubavicius, V.; Yazdi, G. R.; Ivanov, I. G.; Niu, Y. R.; Zakharov, A.; Iakimov, T.; Syväjärvi, M.; Yakimova, R. Surface engineering of SiC via sublimation etching. Appl. Surf. Sci. 2016, 390, 816–822.CrossRefGoogle Scholar
  16. [16]
    Vodakov, Y. A.; Roenkov, A. D.; Ramm, M. G.; Mokhov, E. N.; Makarov, Y. N. Use of Ta-container for sublimation growth and doping of SiC bulk crystals and epitaxial layers. Phys. Status Solidi B 1997, 202, 177–200.CrossRefGoogle Scholar
  17. [17]
    Stöhr, A.; Baringhaus, J.; Aprojanz, J.; Link, S.; Tegenkamp, C.; Niu, Y. R.; Zakharov, A. A.; Chen, C. Y.; Avila, J.; Asensio, M. C. et al. Graphene ribbon growth on structured silicon carbide. Ann. Phys. 2017, 529, 1700052.CrossRefGoogle Scholar
  18. [18]
    Baringhaus, J.; Aprojanz, J.; Wiegand, J.; Laube, D.; Halbauer, M.; Hübner, J.; Oestreich, M.; Tegenkamp, C. Growth and characterization of sidewall graphene nanoribbons. Appl. Phys. Lett. 2015, 106, 043109.CrossRefGoogle Scholar
  19. [19]
    Riedl, C.; Coletti, C.; Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0001): A review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D: Appl. Phys. 2010, 43, 374009.CrossRefGoogle Scholar
  20. [20]
    Carpick, R. W.; Salmeron, M. Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 1997, 97, 1163–1194.CrossRefGoogle Scholar
  21. [21]
    Hunley, D. P.; Flynn, T. J.; Dodson, T.; Sundararajan, A.; Boland, M. J.; Strachan, D. R. Friction, adhesion, and elasticity of graphene edges. Phys. Rev. B 2013, 87, 035417.CrossRefGoogle Scholar
  22. [22]
    Borovikov, V.; Zangwill, A. Step-edge instability during epitaxial growth of graphene from SiC(0001). Phys. Rev. B 2009, 80, 121406.CrossRefGoogle Scholar
  23. [23]
    Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.CrossRefGoogle Scholar
  24. [24]
    Yu, L. L.; Lee, Y. H.; Ling, X.; Santos, E. J. G.; Shin, Y. C.; Lin, Y. X.; Dubey, M.; Kaxiras, E.; Kong, J.; Wang, H. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 2014, 14, 3055–3063.CrossRefGoogle Scholar
  25. [25]
    Byun, K. E.; Chung, H. J.; Lee, J.; Yang, H.; Song, H. J.; Heo, J.; Seo, D. H.; Park, S.; Hwang, S. W.; Yoo, I. et al. Graphene for true ohmic contact at metal-semiconductor junctions. Nano Lett. 2013, 13, 4001–4005.CrossRefGoogle Scholar
  26. [26]
    Guo, Y. Z.; Liu, D. M.; Robertson, J. 3D behavior of schottky barriers of 2D transition-metal dichalcogenides. ACS Appl. Mater. Interfaces 2015, 7, 25709–25715.CrossRefGoogle Scholar
  27. [27]
    Miccoli, I.; Aprojanz, J.; Baringhaus, J.; Lichtenstein, T.; Galves, L. A.; Lopes, J. M. J.; Tegenkamp, C. Quasi-free-standing bilayer graphene nanoribbons probed by electronic transport. Appl. Phys. Lett. 2017, 110, 051601.CrossRefGoogle Scholar
  28. [28]
    Baringhaus, J.; Settnes, M.; Aprojanz, J.; Power, S. R.; Jauho, A. P.; Tegenkamp, C. Electron interference in ballistic graphene nanoconstrictions. Phys. Rev. Lett. 2016, 116, 186602.CrossRefGoogle Scholar
  29. [29]
    Aprojanz, J.; Miccoli, I.; Baringhaus, J.; Tegenkamp, C. 1D ballistic transport channel probed by invasive and non-invasive contacts. Appl. Phys. Lett. 2018, 113, 191602.CrossRefGoogle Scholar
  30. [30]
    Miccoli, I.; Edler, F.; Pfnür, H.; Tegenkamp, C. The 100th anniversary of the four-point probe technique: The role of probe geometries in isotropic and anisotropic systems. J. Phys.: Condens. Matter 2015, 27, 223201.Google Scholar
  31. [31]
    Momeni Pakdehi, D.; Aprojanz, J.; Sinterhauf, A.; Pierz, K.; Kruskopf, M.; Willke, P.; Baringhaus, J.; Stöckmann, J. P.; Traeger, G. A.; Hohls, F. et al. Minimum resistance anisotropy of epitaxial graphene on SiC. ACS Appl. Mater. Interfaces 2018, 10, 6039–6045.CrossRefGoogle Scholar
  32. [32]
    Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, 1995.CrossRefGoogle Scholar
  33. [33]
    Degawa, M.; Thürmer, K.; Morishima, I.; Minoda, H.; Yagi, K.; Williams, E. D. Initial stage of in-phase step wandering on Si(111) vicinal surfaces. Surf. Sci. 2001, 487, 171–179.CrossRefGoogle Scholar
  34. [34]
    Nevius, M. S.; Wang, F.; Mathieu, C.; Barrett, N.; Sala, A.; Mente, T. O.; Locatelli, A.; Conrad, E. H. The bottom-up growth of edge specific graphene nanoribbons. Nano Lett. 2014, 14, 6080–6086.CrossRefGoogle Scholar
  35. [35]
    Ming, F.; Zangwill, A. Model and simulations of the epitaxial growth of graphene on non-planar 6H-SiC surfaces. J. Phys. D: Appl. Phys. 2012, 45, 154007.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Johannes Aprojanz
    • 1
    • 2
  • Pantelis Bampoulis
    • 2
    • 3
  • Alexei A. Zakharov
    • 4
  • Harold J. W. Zandvliet
    • 3
  • Christoph Tegenkamp
    • 1
    • 2
    Email author
  1. 1.Institut für PhysikTechnische Universität ChemnitzChemnitzGermany
  2. 2.Institut für FestköperphysikLeibniz Universität HannoverHannoverGermany
  3. 3.Physics of Interfaces and Nanomaterials, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
  4. 4.MAX IV Laboratory and Lund UniversityLundSweden

Personalised recommendations