Advertisement

Nano Research

, Volume 12, Issue 7, pp 1691–1695 | Cite as

Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials

  • Najme S. Taghavi
  • Patricia GantEmail author
  • Peng Huang
  • Iris Niehues
  • Robert Schmidt
  • Steffen Michaelis de Vasconcellos
  • Rudolf Bratschitsch
  • Mar García-Hernández
  • Riccardo FrisendaEmail author
  • Andres Castellanos-GomezEmail author
Research Article

Abstract

Here, we propose a method to determine the thickness of the most common transition metal dichalcogenides (TMDCs) placed on the surface of transparent stamps, used for the deterministic placement of two-dimensional materials, by analyzing the red, green and blue channels of transmission-mode optical microscopy images of the samples. In particular, the blue channel transmittance shows a large and monotonic thickness dependence, making it a very convenient probe of the flake thickness. The method proves to be robust given the small flake-to-flake variation and the insensitivity to doping changes of MoS2. We also tested the method for MoSe2, WS2 and WSe2. These results provide a reference guide to identify the number of layers of this family of materials on transparent substrates only using optical microscopy.

Keywords

transition metal dichalcogenides optical identification transparent substrate trasmittance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Prof. Der-Yuh Lin and Prof. Tsung-Shine Ko for providing the doped MoS2 samples. N. S. T. acknowledges to the Ministry of Science, Research and Technology of Iran. A. C. G. and P. G. acknowledge funding from the European Commission Graphene Flagship (Grant Graphene Core 2 785219). R. F. acknowledges support from the Netherlands Organization for Scientific Research (NWO) through the research program Rubicon with project number 680-50-1515. A. C. G. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 755655, ERC-StG 2017 project 2D-TOPSENSE).

Supplementary material

12274_2019_2424_MOESM1_ESM.pdf (1.1 mb)
Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V; Jiang, D.; Zhang, Y.; Dubonos, S. V; Grigorieva, I. V; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z. P.; Colombo, L.; Ferrari, A. C. Production and processing of graphene and 2D crystals. Mater. Today 2012, 15, 564–589.CrossRefGoogle Scholar
  3. [3]
    Ferrari, A. C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810.CrossRefGoogle Scholar
  4. [4]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  5. [5]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  6. [6]
    Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.CrossRefGoogle Scholar
  7. [7]
    Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569–3575.CrossRefGoogle Scholar
  8. [8]
    Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q. H.; Zhang, H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 2013, 7, 10344–10353.CrossRefGoogle Scholar
  9. [9]
    Wang, X. F.; Zhao, M.; Nolte, D. D. Optical contrast and clarity of graphene on an arbitrary substrate. Appl. Phys. Lett. 2009, 95, 081102.CrossRefGoogle Scholar
  10. [10]
    Zhang, H.; Ran, F. R.; Shi, X. T.; Fang, X. R.; Wu, S. Y.; Liu, Y.; Zheng, X. Q.; Yang, P.; Liu, Y.; Wang, L. et al. Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates. Nanotechnology 2017, 28, 164001.CrossRefGoogle Scholar
  11. [11]
    Yu, Y. F.; Li, Z. Z.; Wang, W. H.; Guo, X. T.; Jiang, J.; Nan, H. Y.; Ni, Z. H. Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging. J. Semicond. 2017, 38, 033003.CrossRefGoogle Scholar
  12. [12]
    Wang, Y. Y.; Gao, R. X.; Ni, Z. H.; He, H.; Guo, S. P.; Yang, H. P.; Cong, C. X.; Yu, T. Thickness identification of two-dimensional materials by optical imaging. Nanotechnology 2012, 23, 495713.CrossRefGoogle Scholar
  13. [13]
    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.CrossRefGoogle Scholar
  14. [14]
    Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 232104.CrossRefGoogle Scholar
  15. [15]
    Zomer, P. J.; Guimarães, M. H. D.; Brant, J. C.; Tombros, N.; van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 2014, 105, 013101.CrossRefGoogle Scholar
  16. [16]
    Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.CrossRefGoogle Scholar
  17. [17]
    Pizzocchero, F.; Gammelgaard, L.; Jessen, B. S.; Caridad, J. M.; Wang, L.; Hone, J.; Bøggild, P.; Booth, T. J. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 2016, 7, 11894.CrossRefGoogle Scholar
  18. [18]
    Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; de Lara, D. P.; Jarillo-Herrero, P.; Gorbachev, R. V; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68.CrossRefGoogle Scholar
  19. [19]
    Masubuchi, S.; Morimoto, M.; Morikawa, S.; Onodera, M.; Asakawa, Y.; Watanabe, K.; Taniguchi, T.; Machida, T. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 2018, 9, 1413.CrossRefGoogle Scholar
  20. [20]
    Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.CrossRefGoogle Scholar
  21. [21]
    Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.CrossRefGoogle Scholar
  22. [22]
    Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.CrossRefGoogle Scholar
  23. [23]
    Frisenda, R.; Molina-Mendoza, A. J.; Mueller, T.; Castellanos-Gomez, A.; van der Zant, H. S. J. Atomically thin p-n junctions based on two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3339–3358.CrossRefGoogle Scholar
  24. [24]
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  25. [25]
    Pimenta, M. A.; del Corro, E.; Carvalho, B. R.; Fantini, C.; Malard, L. M. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides. Acc. Chem. Res. 2015, 48, 41–47.CrossRefGoogle Scholar
  26. [26]
    Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.CrossRefGoogle Scholar
  27. [27]
    Zeng, H. L.; Cui, X. D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642.CrossRefGoogle Scholar
  28. [28]
    Frisenda, R.; Niu, Y.; Gant, P.; Molina-Mendoza, A. J.; Schmidt, R.; Bratschitsch, R.; Liu, J. X.; Fu, L.; Dumcenco, D.; Kis, A. et al. Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J. Phys. D Appl. Phys. 2017, 50, 074002.CrossRefGoogle Scholar
  29. [29]
    Yang, R.; Zheng, X. Q.; Wang, Z. H.; Miller, C. J.; Feng, P. X. L. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. J. Vac. Sci. Technol. B 2014, 32, 061203.CrossRefGoogle Scholar
  30. [30]
    Castellanos-Gomez, A.; Quereda, J.; van der Meulen, H. P.; Agraït, N.; Rubio-Bollinger, G. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging. Nanotechnology 2016, 27, 115705.CrossRefGoogle Scholar
  31. [31]
    Niu, Y.; Gonzalez-Abad, S.; Frisenda, R.; Marauhn, P.; Drüppel, M.; Gant, P.; Schmidt, R.; Taghavi, N. S.; Barcons, D.; Molina-Mendoza, A. J. et al. Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials 2018, 8, 725.CrossRefGoogle Scholar
  32. [32]
    Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.CrossRefGoogle Scholar
  33. [33]
    Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.CrossRefGoogle Scholar
  34. [34]
    Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.CrossRefGoogle Scholar
  35. [35]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  36. [36]
    Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976–6982.CrossRefGoogle Scholar
  37. [37]
    Svatek, S. A.; Antolin, E.; Lin, D. Y.; Frisenda, R.; Reuter, C.; Molina-Mendoza, A. J.; Muñoz, M.; Agraït, N.; Ko, T. S.; de Lara, D. P. et al. Gate tunable photovoltaic effect in MoS2 vertical p-n homostructures. J. Mater. Chem. C 2017, 5, 854–861.CrossRefGoogle Scholar
  38. [38]
    Reuter, C.; Frisenda, R.; Lin, D. Y.; Ko, T. S.; Perez de Lara, D.; Castellanos-Gomez, A. A versatile scanning photocurrent mapping system to characterize optoelectronic devices based on 2D materials. Small Methods 2017, 1, 1700119.CrossRefGoogle Scholar
  39. [39]
    Wang, S. Y.; Ko, T. S.; Huang, C. C.; Lin, D. Y.; Huang, Y. S. Optical and electrical properties of MoS2 and Fe-doped MoS2. Jpn. J. Appl. Phys. 2014, 53, 04EH07.CrossRefGoogle Scholar
  40. [40]
    Chen, Y. F.; Dumcenco, D. O.; Zhu, Y. M.; Zhang, X.; Mao, N. N.; Feng, Q. L.; Zhang, M.; Zhang, J.; Tan, P. H.; Huang, Y. S. et al. Composition-dependent Raman modes of Mo1−xWxS2 monolayer alloys. Nanoscale 2014, 6, 2833–2839.CrossRefGoogle Scholar
  41. [41]
    Dumcenco, D. O.; Kobayashi, H.; Liu, Z.; Huang, Y. S.; Suenaga, K. Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers. Nat. Commun. 2013, 4, 1351.CrossRefGoogle Scholar
  42. [42]
    Mann, J.; Ma, Q.; Odenthal, P. M.; Isarraraz, M.; Le, D.; Preciado, E.; Barroso, D.; Yamaguchi, K.; von Son Palacio, G.; Nguyen, A. et al. 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers. Adv. Mater. 2014, 26, 1399–1404.CrossRefGoogle Scholar
  43. [43]
    Zhang, M.; Wu, J. X.; Zhu, Y. M.; Dumcenco, D. O.; Hong, J. H.; Mao, N. N.; Deng, S. B.; Chen, Y. F.; Yang, Y. L.; Jin, C. H. et al. Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano 2014, 8, 7130–7137.CrossRefGoogle Scholar
  44. [44]
    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.CrossRefGoogle Scholar
  45. [45]
    Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188.Google Scholar
  46. [46]
    Abràmoff, M. D.; Magalhães, P. J.; Ram, S. J. Image processing with imageJ. Biophotonics Int. 2004, 11, 36–42.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Najme S. Taghavi
    • 1
    • 2
  • Patricia Gant
    • 1
    Email author
  • Peng Huang
    • 1
    • 3
  • Iris Niehues
    • 4
  • Robert Schmidt
    • 4
  • Steffen Michaelis de Vasconcellos
    • 4
  • Rudolf Bratschitsch
    • 4
  • Mar García-Hernández
    • 1
  • Riccardo Frisenda
    • 1
    Email author
  • Andres Castellanos-Gomez
    • 1
    Email author
  1. 1.Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  2. 2.Faculty of PhysicsKhaje Nasir Toosi University of Technology (KNTU)TehrānIran
  3. 3.State Key Laboratory of TribologyTsinghua UniversityBeijingChina
  4. 4.Institute of Physics and Center for NanotechnologyUniversity of MünsterMünsterGermany

Personalised recommendations