Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy

  • 234 Accesses

  • 2 Citations


Studying liquid phase nanoscale dynamic processes of oxide nanoparticles is of considerable interest to a wide variety of fields. Recently developed liquid phase transmission electron microscopy (LP-TEM) is a promising technique, but destabilization of oxides by solid-liquid-electron interactions remains an important challenge. In this work we present a methodology to assess LP-TEM oxide stability in an aqueous phase, by subjecting several oxides of technological importance to a controlled electron dose in water. We show a correlation based on the Gibbs free energy of oxide hydration that can be used to assess the stability of oxides and demonstrate the existence of several remarkably stable oxides, with no observable structural changes after one hour of electron beam irradiation in LP-TEM. Rationalizing such destabilization phenomena combined with the identification of stable oxides allows for designing LP-TEM experiments free from adverse beam effects and thus investigations of numerous relevant nanoscale processes in water.

Change history

  • 01 June 2019

    The article Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy, written by Mark J. Meijerink, Krijn P. de Jong, and Jovana Zečević, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 22 May 2019 without open access. The copyright of the article changed on 3 June 2019 to © The Author(s) 2019 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (<ExternalRef><RefSource></RefSource><RefTarget Address="" TargetType="URL"/></ExternalRef>), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.


  1. [1]

    Casavola, M.; Hermannsdörfer, J.; de Jonge, N.; Dugulan, A. I.; de Jong, K. P. Fabrication of Fischer-Tropsch catalysts by deposition of iron nanocrystals on carbon nanotubes. Adv. Funct. Mater. 2015, 25, 5309–5319.

  2. [2]

    Prieto, G.; Zečević, J.; Friedrich, H.; de Jong, K. P.; de Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 2013, 12, 34–39.

  3. [3]

    Zečević, J.; Vanbutsele, G.; de Jong, K. P.; Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 2015, 528, 245–248.

  4. [4]

    Soled, S. Silica-supported catalysts get a new breath of life. Science 2015, 350, 1171–1172.

  5. [5]

    Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071.

  6. [6]

    Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986.

  7. [7]

    Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943–956.

  8. [8]

    Wang, S. B.; Peng, Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24.

  9. [9]

    Müller, K. A.; Bednorz, J. G. The discovery of a class of high-temperature superconductors. Science 1987, 237, 1133–1139.

  10. [10]

    Cao, X. Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10.

  11. [11]

    Zhang, Z. B.; Wang, C. C.; Zakaria, R.; Ying, J. Y. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 1998, 102, 10871–10878.

  12. [12]

    Csicsery, S. M. Shape-selective catalysis in zeolites. Zeolites 1984, 4, 202–213.

  13. [13]

    Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

  14. [14]

    Kruska, K.; Lozano-Perez, S.; Saxey, D. W.; Terachi, T.; Yamada, T.; Smith, G. D. W. Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels. Corros. Sci. 2012, 63, 225–233.

  15. [15]

    Zeng, R. C.; Zhang, J.; Huang, W. J.; Dietzel, W.; Kainer, K. U.; Blawert, C.; Ke, W. Review of studies on corrosion of magnesium alloys. Trans. Nonferrous Met. Soc. China 2006, 16, s763-s771.

  16. [16]

    Mannhart, J.; Schlom, D. G. Oxide interfaces—An opportunity for electronics. Science 2010, 327, 1607–1611.

  17. [17]

    Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science; Springer: London, 2009.

  18. [18]

    Gramm, F.; Baerlocher, C.; McCusker, L. B.; Warrender, S. J.; Wright, P. A.; Han, B. D.; Hong, S. B.; Liu, Z.; Ohsuna, T.; Terasaki, O. Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 2006, 444, 79–81.

  19. [19]

    Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Zhang, X. G.; Shen, L. F.; Lou, X. W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592–4597.

  20. [20]

    Saka, H.; Kamino, T.; Ara, S.; Sasaki, K. In situ heating transmission electron microscopy. MRS Bull. 2008, 33, 93–100.

  21. [21]

    Mehraeen, S.; McKeown, J. T.; Deshmukh, P. V.; Evans, J. E.; Abellan, P.; Xu, P. H.; Reed, B. W.; Taheri, M. L.; Fischione, P. E.; Browning, N. D. A (S)TEM gas cell holder with localized laser heating for in situ experiments. Microsc. Microanal. 2013, 19, 470–478.

  22. [22]

    Tao, F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487–3539.

  23. [23]

    Wagner, J. B.; Cavalca, F.; Damsgaard, C. D.; Duchstein, L. D. L.; Hansen, T. W. Exploring the environmental transmission electron microscope. Micron 2012, 43, 1169–1175.

  24. [24]

    van den Berg, R.; Elkjaer, C. F.; Gommes, C. J.; Chorkendorff, I.; Sehested, J.; de Jongh, P. E.; de Jong, K. P.; Helveg, S. Revealing the formation of copper nanoparticles from a homogeneous solid precursor by electron microscopy. J. Am. Chem. Soc. 2016, 138, 3433–3442.

  25. [25]

    Feng, X. F.; Chee, S. W.; Sharma, R.; Liu, K.; Xie, X.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. In situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts. Nano Res. 2011, 4, 767–779.

  26. [26]

    de Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695–704.

  27. [27]

    Chen, X.; Li, C.; Cao, H. L. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale 2015, 7, 4811–4819.

  28. [28]

    Li, C.; Chen, X.; Liu, H. Y.; Fang, J. L.; Zhou, X. Q. In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters. Nano Res. 2018, 11, 4697–4707.

  29. [29]

    Munnik, P.; de Jongh, P. E.; de Jong, K. P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 2015, 115, 6687–6718.

  30. [30]

    Mehrabadi, B. A. T.; Eskandari, S.; Khan, U.; White, R. D.; Regalbuto, J. R. A review of preparation methods for supported metal catalysts. Adv. Catal. 2017, 61, 1–35.

  31. [31]

    Xiong, H. F.; Pham, H. N.; Datye, A. K. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chem. 2014, 16, 4627–4643.

  32. [32]

    Ravenelle, R. M.; Copeland, J. R.; Kim, W. G.; Crittenden, J. C.; Sievers, C. Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catal. 2011, 1, 552–561.

  33. [33]

    Chee, S. W.; Pratt, S. H.; Hattar, K.; Duquette, D.; Ross, F. M.; Hull, R. Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun. 2015, 51, 168–171.

  34. [34]

    Gu, M.; Parent, L. R.; Mehdi, B. L.; Unocic, R. R.; McDowell, M. T.; Sacci, R. L.; Xu, W.; Connell, J. G.; Xu, P. H.; Abellan, P. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 2013, 13, 6106–6112.

  35. [35]

    Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.; Hull, R.; Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2003, 2, 532–536.

  36. [36]

    Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61–64.

  37. [37]

    Ye, X. C; Jones, M. R.; Frechette, L. B.; Chen, Q.; Powers, A. S.; Ercius, P.; Dunn, G; Rotskoff, G M.; Nguyen, S. C; Adiga, V. P. et al. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 2016, 354, 874–877.

  38. [38]

    Dai, L. L.; Sharma, R.; Wu, C. Y Self-assembled structure of nanoparticles at a liquid-liquid interface. Langmuir 2005, 21, 2641–2643.

  39. [39]

    Hendley IV, C. T.; Tao, J. H; Kunitake, J. A. M. R.; de Yoreo, J. J.; Estroff, L. A. Microscopy techniques for investigating the control of organic constituents on biomineralization. MRS Bull. 2015, 40, 480–489.

  40. [40]

    Smeets, P. J. M.; Cho, K. R.; Kempen, R. G E.; Sommerdijk, N. A. J. M.; de Yoreo, J. J. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat. Mater. 2015, 14, 394–399.

  41. [41]

    Elgrabli, D.; Dachraoui, W.; Ménard-Moyon, C; Liu, X. J.; Bégin, D.; Bégin-Colin, S.; Bianco, A.; Gazeau, F.; Alloyeau, D. Carbon nanotube degradation in macrophages: Live nanoscale monitoring and understanding of biological pathway. ACS Nano 2015, 9, 10113–10124.

  42. [42]

    Zheng, H. M.; Claridge, S. A.; Minor, A. M.; Alivisatos, A. P.; Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 2009, 9, 2460–2465.

  43. [43]

    Pohlmann, E. S.; Patel, K; Guo, S. J.; Dukes, M. J.; Sheng, Z.; Kelly, D. F Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett. 2015, 15, 2329–2335.

  44. [44]

    Radisic, A.; Vereecken, P. M.; Hannon, J. B.; Searson, P. C; Ross, F M. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 2006, 6, 238–242.

  45. [45]

    Sacci, R. L.; Dudney, N. J.; More, K. L.; Parent, L. R.; Arslan, I.; Browning, N. D.; Unocic, R. R. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 2014, 50, 2104–2107.

  46. [46]

    Woehl, T. J.; Abellan, P. Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J. Microsc. 2017, 265, 135–147.

  47. [47]

    Kraus, T.; de Jonge, N. Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir 2013, 29, 8427–8432.

  48. [48]

    Jungjohann, K. L.; Bliznakov, S.; Sutter, P. W.; Stach, E. A.; Sutter, E. A. In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett. 2013, 13, 2964–2970.

  49. [49]

    Abellan, P.; Mehdi, B. L.; Parent, L. R.; Gu, M.; Park, C; Xu, W.; Zhang, Y H.; Arslan, I.; Zhang, J. G; Wang, C. M. et al. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 2014, 14, 1293–1299.

  50. [50]

    Park, J.; Park, H; Ercius, P.; Pegoraro, A. F; Xu, C; Kim, J. W.; Han, S. H; Weitz, D. A Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett. 2015, 15, 4737–4744.

  51. [51]

    Nielsen, M. H; Li, D. S.; Zhang, H. Z.; Aloni, S.; Han, T. Y J.; Frandsen, C; Seto, J.; Banfield, J. F.; Cölfen, H; de Yoreo, J. J. Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal. 2014, 20, 425–436.

  52. [52]

    Zečević, J.; Hermannsdörfer, J.; Schuh, T.; de Jong, K. P.; de Jonge, N. Anisotropic shape changes of silica nanoparticles induced in liquid with scanning transmission electron microscopy. Small 2017, 13, 1602466.

  53. [53]

    van de Put, M. W. P.; Carcouët, C. C. M. C; Bomans, P. H. H; Friedrich, H.; de Jonge, N.; Sommerdijk, N. A. J. M. Writing silica structures in liquid with scanning transmission electron microscopy. Small 2015, 11, 585–590.

  54. [54]

    Meijerink, M. J.; Spiga, C; Hansen, T. W.; Damsgaard, C. D.; de Jong, K. P.; Zečević, J. Nanoscale imaging and stabilization of silica nanospheres in liquid phase transmission electron microscopy. Part. Part. Syst. Charact. 2019, 36, 1800374.

  55. [55]

    Lu, Y; Geng, J. G; Wang, K; Zhang, W.; Ding, W. Q.; Zhang, Z. H; Xie, S. H; Dai, H. X.; Chen, F R.; Sui, M. L. Modifying surface chemistry of metal oxides for boosting dissolution kinetics in water by liquid cell electron microscopy. ACS Nano 2017, 11, 8018–8025.

  56. [56]

    Thommes, M.; Kaneko, K; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069.

  57. [57]

    Hernández Mejía, C; den Otter, J. H; Weber, J. L.; de Jong, K. P. Crystalline niobia with tailored porosity as support for cobalt catalysts for the Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2017, 548, 143–149.

  58. [58]

    Ropp, R. C. Encyclopedia of the Alkaline Earth Compounds; Elsevier: Amsterdam, 2013.

  59. [59]

    Koh, A. L.; Gidcumb, E.; Zhou, O.; Sinclair, R. The dissipation of field emitting carbon nanotubes in an oxygen environment as revealed by in situ transmission electron microscopy. Nanoscale 2016, 8, 16405–16415.

  60. [60]

    Schweitzer, G K; Pesterfield, L. L. The Aqueous Chemistry of the Elements; Oxford University Press: Oxford, 2010.

  61. [61]

    Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F M.; Bau, H. H. Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 2014, 118, 22373–22382.

  62. [62]

    Robie, R. A.; Hemingway, B. S.; Fisher, J. R. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (10 5 Pascals) Pressure and at Higher Temperatures. United States Department of the Interior, Geological Survey: Washington, DC, 1978.

  63. [63]

    Wesolowski, D. J.; Ziemniak, S. E.; Anovitz, L. M.; Machesky, M. L.; Bénézeth, P.; Palmer, D. A. Solubility and surface adsorption characteristics of metal oxides. In Aqueous Systems at Elevated Temperatures and Pressures. Palmer, D. A; Fernández-Prini, R.; Harvey, A. H, Eds.; Elsevier: Amsterdam, 2004; pp 493–595.

  64. [64]

    Perry, R. H; Green, D. W. Perry’s Chemical Engineers’ Handbook; 8th ed. McGraw-Hill: New York, 2008.

  65. [65]

    Peiffert, C; Nguyen-Trung, C; Palmer, D. A.; Laval, J. P.; Giffaut, E. Solubility of B-Nb2O5 and the hydrolysis of niobium(V) in aqueous solution as a function of temperature and ionic strength. J. Solution Chem. 2010, 39, 197–218.

  66. [66]

    Lencka, M. M.; Anderko, A.; Riman, R. E. Hydrothermal precipitation of lead zirconate titanate solid solutions: Thermodynamic modeling and experimental synthesis. J. Am. Ceram. Soc. 1995, 78, 2609–2618.

  67. [67]

    Söhnel, O.; Garside, J. Precipitation: Basic Principles and Industrial Applications; Butterworth-Heinemann: Boston, 1992.

  68. [68]

    Tanabe, K. Niobic acid as an unusual acidic solid material. Mater. Chem. Phys. 1987, 17, 217–225.

  69. [69]

    Abellan, P.; Woehl, T. J.; Parent, L. R.; Browning, N. D.; Evans, J. E.; Arslan, I. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun. 2014, 50, 4873–4880.

  70. [70]

    Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

  71. [71]

    Wang, C. C; Ying, J. Y Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 1999, 11, 3113–3120.

Download references


The authors gratefully acknowledge J. D. Meeldijk for technical assistance with the electron microscope, R. Dalebout, L. Weber and P. Paalanen for the N2 physisorption measurements, M. Versluijs-Helder for the TGA-MS measurements, S. M. C. de Jong for help with the synthesis of the amorphous TiO2 and C. Hernandez Meija for providing the Nb2O5 samples. K. P. de Jong and M.J. Meijerink acknowledge funding from the European Research Council, an EU FP7 ERC Advanced Grant no. 338846. J. Zečević acknowledges financial support by Netherlands Organization for Scientific Research (NWO), Veni Grant No. 722.015.010.

Author information

Correspondence to Jovana Zečević.

Additional information

A correction to this article is available at

Electronic supplementary material

Rights and permissions

Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meijerink, M.J., de Jong, K.P. & Zečević, J. Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy. Nano Res. 12, 2355–2363 (2019).

Download citation


  • liquid phase TEM
  • transmission electron microscopy
  • electron beam damage
  • metal oxide nanomaterials
  • oxide stability