Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy

A Publisher's Erratum to this article was published on 01 June 2019

This article has been updated

Abstract

Studying liquid phase nanoscale dynamic processes of oxide nanoparticles is of considerable interest to a wide variety of fields. Recently developed liquid phase transmission electron microscopy (LP-TEM) is a promising technique, but destabilization of oxides by solid-liquid-electron interactions remains an important challenge. In this work we present a methodology to assess LP-TEM oxide stability in an aqueous phase, by subjecting several oxides of technological importance to a controlled electron dose in water. We show a correlation based on the Gibbs free energy of oxide hydration that can be used to assess the stability of oxides and demonstrate the existence of several remarkably stable oxides, with no observable structural changes after one hour of electron beam irradiation in LP-TEM. Rationalizing such destabilization phenomena combined with the identification of stable oxides allows for designing LP-TEM experiments free from adverse beam effects and thus investigations of numerous relevant nanoscale processes in water.

Change history

  • 01 June 2019

    The article Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy, written by Mark J. Meijerink, Krijn P. de Jong, and Jovana Zečević, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 22 May 2019 without open access. The copyright of the article changed on 3 June 2019 to © The Author(s) 2019 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (<ExternalRef><RefSource>https://doi.org/creativecommons.org/licenses/by/4.0/</RefSource><RefTarget Address="http://creativecommons.org/licenses/by/4.0/" TargetType="URL"/></ExternalRef>), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

References

  1. [1]

    Casavola, M.; Hermannsdörfer, J.; de Jonge, N.; Dugulan, A. I.; de Jong, K. P. Fabrication of Fischer-Tropsch catalysts by deposition of iron nanocrystals on carbon nanotubes. Adv. Funct. Mater. 2015, 25, 5309–5319.

    Article  Google Scholar 

  2. [2]

    Prieto, G.; Zečević, J.; Friedrich, H.; de Jong, K. P.; de Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 2013, 12, 34–39.

    Article  Google Scholar 

  3. [3]

    Zečević, J.; Vanbutsele, G.; de Jong, K. P.; Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 2015, 528, 245–248.

    Article  Google Scholar 

  4. [4]

    Soled, S. Silica-supported catalysts get a new breath of life. Science 2015, 350, 1171–1172.

    Article  Google Scholar 

  5. [5]

    Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071.

    Article  Google Scholar 

  6. [6]

    Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986.

    Article  Google Scholar 

  7. [7]

    Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943–956.

    Article  Google Scholar 

  8. [8]

    Wang, S. B.; Peng, Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24.

    Article  Google Scholar 

  9. [9]

    Müller, K. A.; Bednorz, J. G. The discovery of a class of high-temperature superconductors. Science 1987, 237, 1133–1139.

    Article  Google Scholar 

  10. [10]

    Cao, X. Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10.

    Article  Google Scholar 

  11. [11]

    Zhang, Z. B.; Wang, C. C.; Zakaria, R.; Ying, J. Y. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 1998, 102, 10871–10878.

    Article  Google Scholar 

  12. [12]

    Csicsery, S. M. Shape-selective catalysis in zeolites. Zeolites 1984, 4, 202–213.

    Article  Google Scholar 

  13. [13]

    Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

    Article  Google Scholar 

  14. [14]

    Kruska, K.; Lozano-Perez, S.; Saxey, D. W.; Terachi, T.; Yamada, T.; Smith, G. D. W. Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels. Corros. Sci. 2012, 63, 225–233.

    Article  Google Scholar 

  15. [15]

    Zeng, R. C.; Zhang, J.; Huang, W. J.; Dietzel, W.; Kainer, K. U.; Blawert, C.; Ke, W. Review of studies on corrosion of magnesium alloys. Trans. Nonferrous Met. Soc. China 2006, 16, s763-s771.

  16. [16]

    Mannhart, J.; Schlom, D. G. Oxide interfaces—An opportunity for electronics. Science 2010, 327, 1607–1611.

    Article  Google Scholar 

  17. [17]

    Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science; Springer: London, 2009.

    Book  Google Scholar 

  18. [18]

    Gramm, F.; Baerlocher, C.; McCusker, L. B.; Warrender, S. J.; Wright, P. A.; Han, B. D.; Hong, S. B.; Liu, Z.; Ohsuna, T.; Terasaki, O. Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 2006, 444, 79–81.

    Article  Google Scholar 

  19. [19]

    Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Zhang, X. G.; Shen, L. F.; Lou, X. W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592–4597.

    Article  Google Scholar 

  20. [20]

    Saka, H.; Kamino, T.; Ara, S.; Sasaki, K. In situ heating transmission electron microscopy. MRS Bull. 2008, 33, 93–100.

    Article  Google Scholar 

  21. [21]

    Mehraeen, S.; McKeown, J. T.; Deshmukh, P. V.; Evans, J. E.; Abellan, P.; Xu, P. H.; Reed, B. W.; Taheri, M. L.; Fischione, P. E.; Browning, N. D. A (S)TEM gas cell holder with localized laser heating for in situ experiments. Microsc. Microanal. 2013, 19, 470–478.

    Article  Google Scholar 

  22. [22]

    Tao, F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487–3539.

    Article  Google Scholar 

  23. [23]

    Wagner, J. B.; Cavalca, F.; Damsgaard, C. D.; Duchstein, L. D. L.; Hansen, T. W. Exploring the environmental transmission electron microscope. Micron 2012, 43, 1169–1175.

    Article  Google Scholar 

  24. [24]

    van den Berg, R.; Elkjaer, C. F.; Gommes, C. J.; Chorkendorff, I.; Sehested, J.; de Jongh, P. E.; de Jong, K. P.; Helveg, S. Revealing the formation of copper nanoparticles from a homogeneous solid precursor by electron microscopy. J. Am. Chem. Soc. 2016, 138, 3433–3442.

    Article  Google Scholar 

  25. [25]

    Feng, X. F.; Chee, S. W.; Sharma, R.; Liu, K.; Xie, X.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. In situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts. Nano Res. 2011, 4, 767–779.

    Article  Google Scholar 

  26. [26]

    de Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695–704.

    Article  Google Scholar 

  27. [27]

    Chen, X.; Li, C.; Cao, H. L. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale 2015, 7, 4811–4819.

    Article  Google Scholar 

  28. [28]

    Li, C.; Chen, X.; Liu, H. Y.; Fang, J. L.; Zhou, X. Q. In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters. Nano Res. 2018, 11, 4697–4707.

  29. [29]

    Munnik, P.; de Jongh, P. E.; de Jong, K. P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 2015, 115, 6687–6718.

    Article  Google Scholar 

  30. [30]

    Mehrabadi, B. A. T.; Eskandari, S.; Khan, U.; White, R. D.; Regalbuto, J. R. A review of preparation methods for supported metal catalysts. Adv. Catal. 2017, 61, 1–35.

    Google Scholar 

  31. [31]

    Xiong, H. F.; Pham, H. N.; Datye, A. K. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chem. 2014, 16, 4627–4643.

    Article  Google Scholar 

  32. [32]

    Ravenelle, R. M.; Copeland, J. R.; Kim, W. G.; Crittenden, J. C.; Sievers, C. Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catal. 2011, 1, 552–561.

    Article  Google Scholar 

  33. [33]

    Chee, S. W.; Pratt, S. H.; Hattar, K.; Duquette, D.; Ross, F. M.; Hull, R. Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun. 2015, 51, 168–171.

    Article  Google Scholar 

  34. [34]

    Gu, M.; Parent, L. R.; Mehdi, B. L.; Unocic, R. R.; McDowell, M. T.; Sacci, R. L.; Xu, W.; Connell, J. G.; Xu, P. H.; Abellan, P. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 2013, 13, 6106–6112.

    Article  Google Scholar 

  35. [35]

    Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.; Hull, R.; Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2003, 2, 532–536.

    Article  Google Scholar 

  36. [36]

    Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61–64.

    Article  Google Scholar 

  37. [37]

    Ye, X. C; Jones, M. R.; Frechette, L. B.; Chen, Q.; Powers, A. S.; Ercius, P.; Dunn, G; Rotskoff, G M.; Nguyen, S. C; Adiga, V. P. et al. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 2016, 354, 874–877.

    Article  Google Scholar 

  38. [38]

    Dai, L. L.; Sharma, R.; Wu, C. Y Self-assembled structure of nanoparticles at a liquid-liquid interface. Langmuir 2005, 21, 2641–2643.

    Article  Google Scholar 

  39. [39]

    Hendley IV, C. T.; Tao, J. H; Kunitake, J. A. M. R.; de Yoreo, J. J.; Estroff, L. A. Microscopy techniques for investigating the control of organic constituents on biomineralization. MRS Bull. 2015, 40, 480–489.

    Article  Google Scholar 

  40. [40]

    Smeets, P. J. M.; Cho, K. R.; Kempen, R. G E.; Sommerdijk, N. A. J. M.; de Yoreo, J. J. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat. Mater. 2015, 14, 394–399.

    Article  Google Scholar 

  41. [41]

    Elgrabli, D.; Dachraoui, W.; Ménard-Moyon, C; Liu, X. J.; Bégin, D.; Bégin-Colin, S.; Bianco, A.; Gazeau, F.; Alloyeau, D. Carbon nanotube degradation in macrophages: Live nanoscale monitoring and understanding of biological pathway. ACS Nano 2015, 9, 10113–10124.

    Article  Google Scholar 

  42. [42]

    Zheng, H. M.; Claridge, S. A.; Minor, A. M.; Alivisatos, A. P.; Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 2009, 9, 2460–2465.

    Article  Google Scholar 

  43. [43]

    Pohlmann, E. S.; Patel, K; Guo, S. J.; Dukes, M. J.; Sheng, Z.; Kelly, D. F Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett. 2015, 15, 2329–2335.

    Article  Google Scholar 

  44. [44]

    Radisic, A.; Vereecken, P. M.; Hannon, J. B.; Searson, P. C; Ross, F M. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 2006, 6, 238–242.

    Article  Google Scholar 

  45. [45]

    Sacci, R. L.; Dudney, N. J.; More, K. L.; Parent, L. R.; Arslan, I.; Browning, N. D.; Unocic, R. R. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 2014, 50, 2104–2107.

    Article  Google Scholar 

  46. [46]

    Woehl, T. J.; Abellan, P. Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J. Microsc. 2017, 265, 135–147.

    Article  Google Scholar 

  47. [47]

    Kraus, T.; de Jonge, N. Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir 2013, 29, 8427–8432.

    Article  Google Scholar 

  48. [48]

    Jungjohann, K. L.; Bliznakov, S.; Sutter, P. W.; Stach, E. A.; Sutter, E. A. In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett. 2013, 13, 2964–2970.

    Article  Google Scholar 

  49. [49]

    Abellan, P.; Mehdi, B. L.; Parent, L. R.; Gu, M.; Park, C; Xu, W.; Zhang, Y H.; Arslan, I.; Zhang, J. G; Wang, C. M. et al. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 2014, 14, 1293–1299.

    Article  Google Scholar 

  50. [50]

    Park, J.; Park, H; Ercius, P.; Pegoraro, A. F; Xu, C; Kim, J. W.; Han, S. H; Weitz, D. A Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett. 2015, 15, 4737–4744.

    Article  Google Scholar 

  51. [51]

    Nielsen, M. H; Li, D. S.; Zhang, H. Z.; Aloni, S.; Han, T. Y J.; Frandsen, C; Seto, J.; Banfield, J. F.; Cölfen, H; de Yoreo, J. J. Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal. 2014, 20, 425–436.

    Article  Google Scholar 

  52. [52]

    Zečević, J.; Hermannsdörfer, J.; Schuh, T.; de Jong, K. P.; de Jonge, N. Anisotropic shape changes of silica nanoparticles induced in liquid with scanning transmission electron microscopy. Small 2017, 13, 1602466.

  53. [53]

    van de Put, M. W. P.; Carcouët, C. C. M. C; Bomans, P. H. H; Friedrich, H.; de Jonge, N.; Sommerdijk, N. A. J. M. Writing silica structures in liquid with scanning transmission electron microscopy. Small 2015, 11, 585–590.

    Article  Google Scholar 

  54. [54]

    Meijerink, M. J.; Spiga, C; Hansen, T. W.; Damsgaard, C. D.; de Jong, K. P.; Zečević, J. Nanoscale imaging and stabilization of silica nanospheres in liquid phase transmission electron microscopy. Part. Part. Syst. Charact. 2019, 36, 1800374.

    Article  Google Scholar 

  55. [55]

    Lu, Y; Geng, J. G; Wang, K; Zhang, W.; Ding, W. Q.; Zhang, Z. H; Xie, S. H; Dai, H. X.; Chen, F R.; Sui, M. L. Modifying surface chemistry of metal oxides for boosting dissolution kinetics in water by liquid cell electron microscopy. ACS Nano 2017, 11, 8018–8025.

    Article  Google Scholar 

  56. [56]

    Thommes, M.; Kaneko, K; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069.

    Article  Google Scholar 

  57. [57]

    Hernández Mejía, C; den Otter, J. H; Weber, J. L.; de Jong, K. P. Crystalline niobia with tailored porosity as support for cobalt catalysts for the Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2017, 548, 143–149.

    Article  Google Scholar 

  58. [58]

    Ropp, R. C. Encyclopedia of the Alkaline Earth Compounds; Elsevier: Amsterdam, 2013.

    Google Scholar 

  59. [59]

    Koh, A. L.; Gidcumb, E.; Zhou, O.; Sinclair, R. The dissipation of field emitting carbon nanotubes in an oxygen environment as revealed by in situ transmission electron microscopy. Nanoscale 2016, 8, 16405–16415.

    Article  Google Scholar 

  60. [60]

    Schweitzer, G K; Pesterfield, L. L. The Aqueous Chemistry of the Elements; Oxford University Press: Oxford, 2010.

    Google Scholar 

  61. [61]

    Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F M.; Bau, H. H. Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 2014, 118, 22373–22382.

    Article  Google Scholar 

  62. [62]

    Robie, R. A.; Hemingway, B. S.; Fisher, J. R. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (10 5 Pascals) Pressure and at Higher Temperatures. United States Department of the Interior, Geological Survey: Washington, DC, 1978.

    Google Scholar 

  63. [63]

    Wesolowski, D. J.; Ziemniak, S. E.; Anovitz, L. M.; Machesky, M. L.; Bénézeth, P.; Palmer, D. A. Solubility and surface adsorption characteristics of metal oxides. In Aqueous Systems at Elevated Temperatures and Pressures. Palmer, D. A; Fernández-Prini, R.; Harvey, A. H, Eds.; Elsevier: Amsterdam, 2004; pp 493–595.

    Google Scholar 

  64. [64]

    Perry, R. H; Green, D. W. Perry’s Chemical Engineers’ Handbook; 8th ed. McGraw-Hill: New York, 2008.

    Google Scholar 

  65. [65]

    Peiffert, C; Nguyen-Trung, C; Palmer, D. A.; Laval, J. P.; Giffaut, E. Solubility of B-Nb2O5 and the hydrolysis of niobium(V) in aqueous solution as a function of temperature and ionic strength. J. Solution Chem. 2010, 39, 197–218.

    Article  Google Scholar 

  66. [66]

    Lencka, M. M.; Anderko, A.; Riman, R. E. Hydrothermal precipitation of lead zirconate titanate solid solutions: Thermodynamic modeling and experimental synthesis. J. Am. Ceram. Soc. 1995, 78, 2609–2618.

    Article  Google Scholar 

  67. [67]

    Söhnel, O.; Garside, J. Precipitation: Basic Principles and Industrial Applications; Butterworth-Heinemann: Boston, 1992.

    Google Scholar 

  68. [68]

    Tanabe, K. Niobic acid as an unusual acidic solid material. Mater. Chem. Phys. 1987, 17, 217–225.

    Article  Google Scholar 

  69. [69]

    Abellan, P.; Woehl, T. J.; Parent, L. R.; Browning, N. D.; Evans, J. E.; Arslan, I. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun. 2014, 50, 4873–4880.

    Article  Google Scholar 

  70. [70]

    Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  71. [71]

    Wang, C. C; Ying, J. Y Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 1999, 11, 3113–3120.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge J. D. Meeldijk for technical assistance with the electron microscope, R. Dalebout, L. Weber and P. Paalanen for the N2 physisorption measurements, M. Versluijs-Helder for the TGA-MS measurements, S. M. C. de Jong for help with the synthesis of the amorphous TiO2 and C. Hernandez Meija for providing the Nb2O5 samples. K. P. de Jong and M.J. Meijerink acknowledge funding from the European Research Council, an EU FP7 ERC Advanced Grant no. 338846. J. Zečević acknowledges financial support by Netherlands Organization for Scientific Research (NWO), Veni Grant No. 722.015.010.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jovana Zečević.

Additional information

A correction to this article is available at https://doi.org/10.1007/s12274-019-2448-y

Electronic supplementary material

Rights and permissions

Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meijerink, M.J., de Jong, K.P. & Zečević, J. Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy. Nano Res. 12, 2355–2363 (2019). https://doi.org/10.1007/s12274-019-2419-3

Download citation

Keywords

  • liquid phase TEM
  • transmission electron microscopy
  • electron beam damage
  • metal oxide nanomaterials
  • oxide stability