Nano Research

, Volume 12, Issue 6, pp 1473–1481 | Cite as

Reproducible large-scale synthesis of surface silanized nanoparticles as an enabling nanoproteomics platform: Enrichment of the human heart phosphoproteome

  • David S. Roberts
  • Bifan Chen
  • Timothy N. Tiambeng
  • Zhijie Wu
  • Ying GeEmail author
  • Song JinEmail author
Research Article


A reproducible synthetic strategy was developed for facile large-scale (200 mg) synthesis of surface silanized magnetite (Fe3O4) nanoparticles (NPs) for biological applications. After further coupling a phosphate-specific affinity ligand, these functionalized magnetic NPs were used for the highly specific enrichment of phosphoproteins from a complex biological mixture. Moreover, correlating the surface silane density of the silanized magnetite NPs to their resultant enrichment performance established a simple and reliable quality assurance control to ensure reproducible synthesis of these NPs routinely in large scale and optimal phosphoprotein enrichment performance from batch-to-batch. Furthermore, by successful exploitation of a top-down phosphoproteomics strategy that integrates this high throughput nanoproteomics platform with online liquid chromatography (LC) and tandem mass spectrometry (MS/MS), we were able to specifically enrich, identify, and characterize endogenous phosphoproteins from highly complex human cardiac tissue homogenate. This nanoproteomics platform possesses a unique combination of scalability, specificity, reproducibility, and efficiency for the capture and enrichment of low abundance proteins in general, thereby enabling downstream proteomics applications.


nanoparticles nanoproteomics surface functionalization large-scale phosphoprotein enrichment top-down proteomics mass spectrometry 



The financial support for this project is provided by NIH R01 GM117058 (to S. J. and Y. G.). Moreover, Y. G. would like to acknowledge the NIH R01 GM125085 and S10 OD018475. T. N. T. would like to acknowledge support from the NIH Chemistry-Biology Interface Training Program NIH T32GM008505.

Supplementary material

12274_2019_2418_MOESM1_ESM.pdf (3.7 mb)
Reproducible large-scale synthesis of surface silanized nanoparticles as an enabling nanoproteomics platform: Enrichment of the human heart phosphoproteome


  1. [1]
    De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241.CrossRefGoogle Scholar
  2. [2]
    Mitragotri, S.; Anderson, D. G.; Chen, X. Y.; Chow, E. K.; Ho, D.; Kabanov, A. V; Karp, J. M.; Kataoka, K.; Mirkin, C. A.; Petrosko, S. H. et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 2015, 9, 6644–6654.CrossRefGoogle Scholar
  3. [3]
    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.CrossRefGoogle Scholar
  4. [4]
    Gao, J. H.; Gu, H. W.; Xu, B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107.CrossRefGoogle Scholar
  5. [5]
    Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. 2010, 49, 3280–3294.CrossRefGoogle Scholar
  6. [6]
    Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Anarjan, N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res. 2016, 9, 2203–2225.CrossRefGoogle Scholar
  7. [7]
    Xie, J.; Liu, G.; Eden, H. S.; Ai, H.; Chen, X. Y. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res. 2011, 44, 883–892.CrossRefGoogle Scholar
  8. [8]
    Ho, D.; Sun, X. L.; Sun, S. H. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44, 875–882.CrossRefGoogle Scholar
  9. [9]
    Zhang, W. Z.; Liu, L.; Chen, H. M.; Hu, K.; Delahunty, I.; Gao, S.; Xie, J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018, 8, 2521–2548.CrossRefGoogle Scholar
  10. [10]
    Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.CrossRefGoogle Scholar
  11. [11]
    White, M. A.; Johnson, J. A.; Koberstein, J. T.; Turro, N. J. Toward the syntheses of universal ligands for metal oxide surfaces: Controlling surface functionality through click chemistry. J. Am. Chem. Soc. 2006, 128, 11356–11357.CrossRefGoogle Scholar
  12. [12]
    Grancharov, S. G.; Zeng, H.; Sun, S. H.; Wang, S. X.; O’Brien, S.; Murray, C. B.; Kirtley, J. R.; Held, G. A. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J. Phys. Chem. B 2005, 109, 13030–13035.CrossRefGoogle Scholar
  13. [13]
    Hong, R.; Fischer, N. O.; Emrick, T.; Rotello, V. M. Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem. Mater. 2005, 17, 4617–4621.CrossRefGoogle Scholar
  14. [14]
    Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938–9939.CrossRefGoogle Scholar
  15. [15]
    Lattuada, M.; Hatton, T. A. Functionalization of monodisperse magnetic nanoparticles. Langmuir 2007, 23, 2158–2168.CrossRefGoogle Scholar
  16. [16]
    De Palma, R.; Peeters, S.; Van Bael, M. J.; Van Den Rul, H.; Bonroy, K.; Laureyn, W.; Mullens, J.; Borghs, G.; Maes, G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 2007, 19, 1821–1831.CrossRefGoogle Scholar
  17. [17]
    Plueddemann, E. P. Reminiscing on silane coupling agents. J. Adhes. Sci. Technol. 1991, 5, 261–277.CrossRefGoogle Scholar
  18. [18]
    Arkles, B.; Steinmetz, J. R.; Zazyczny, J.; Mehta, P. Factors contributing to the stability of alkoxysilanes in aqueous solution. J. Adhes. Sci. Technol. 1992, 6, 193–206.CrossRefGoogle Scholar
  19. [19]
    Cano, M.; Núñez-Lozano, R.; Lumbreras, R.; González-Rodríguez, V.; Delgado-García, A.; Jiménez-Hoyuela, J. M.; De La Cueva-Méndez, G. Partial PEGylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications. Nanoscale 2017, 9, 812–822.CrossRefGoogle Scholar
  20. [20]
    Jana, N. R.; Earhart, C.; Ying, J. Y. Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem. Mater. 2007, 19, 5074–5082.CrossRefGoogle Scholar
  21. [21]
    Smolensky, E. D.; Park, H. Y. E.; Berquó, T. S.; Pierre, V. C. Surface functionalization of magnetic iron oxide nanoparticles for MRI applications— Effect of anchoring group and ligand exchange protocol. Contrast Media Mol. Imaging 2011, 6, 189–199.Google Scholar
  22. [22]
    Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347–355.CrossRefGoogle Scholar
  23. [23]
    Cai, W. X.; Tucholski, T. M.; Gregorich, Z. R.; Ge, Y. Top-down proteomics: Technology advancements and applications to heart diseases. Expert Rev. Proteomics 2016, 13, 717–730.CrossRefGoogle Scholar
  24. [24]
    Chen, B. F.; Brown, K. A.; Lin, Z. Q.; Ge, Y. Top-down proteomics: Ready for prime time? Anal. Chem. 2018, 90, 110–127.CrossRefGoogle Scholar
  25. [25]
    Anderson, N. L.; Anderson, N. G. The human plasma proteome. Mol. Cell. Proteomics 2002, 1, 845–867.CrossRefGoogle Scholar
  26. [26]
    Siuti, N.; Kelleher, N. L. Decoding protein modifications using top-down mass spectrometry. Nat. Methods 2007, 4, 817–821.CrossRefGoogle Scholar
  27. [27]
    Brown, K. A.; Chen, B. F.; Guardado-Alvarez, T. M.; Lin, Z. Q.; Hwang, L.; Ayaz-Guner, S.; Jin, S.; Ge, Y. A photocleavable surfactant for top-down proteomics. Nat. Methods, in press, DOI: 10.1038/s41592-019-0391-1.Google Scholar
  28. [28]
    Xie, S. N.; Moya, C.; Bilgin, B.; Jayaraman, A.; Walton, S. P. Emerging affinity-based techniques in proteomics. Expert Rev. Proteomics 2009, 6, 573–583.CrossRefGoogle Scholar
  29. [29]
    Hunter, T. Signaling—2000 and beyond. Cell 2000, 100, 113–127.CrossRefGoogle Scholar
  30. [30]
    Hwang, L.; Ayaz-Guner, S.; Gregorich, Z. R.; Cai, W. X.; Valeja, S. G.; Jin, S.; Ge, Y. Specific enrichment of phosphoproteins using functionalized multivalent nanoparticles. J. Am. Chem. Soc. 2015, 137, 2432–2435.CrossRefGoogle Scholar
  31. [31]
    Chen, B. F.; Hwang, L.; Ochowicz, W.; Lin, Z. Q.; Guardado-Alvarez, T. M.; Cai, W. X.; Xiu, L. C.; Dani, K.; Colah, C.; Jin, S. et al. Coupling functionalized cobalt ferrite nanoparticle enrichment with online LC/MS/MS for top-down phosphoproteomics. Chem. Sci. 2017, 8, 4306–4311.CrossRefGoogle Scholar
  32. [32]
    Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.CrossRefGoogle Scholar
  33. [33]
    Pan, Y.; Long, M. J. C.; Lin, H. C.; Hedstrom, L.; Xu, B. Magnetic nanoparticles for direct protein sorting inside live cells. Chem. Sci. 2012, 3, 3495–3499.CrossRefGoogle Scholar
  34. [34]
    Aubin-Tam, M. E.; Hamad-Schifferli, K. Structure and function of nanoparticle-protein conjugates. Biomed. Mater. 2008, 3, 034001.CrossRefGoogle Scholar
  35. [35]
    Bagwe, R. P.; Hilliard, L. R.; Tan, W. H. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357–4362.CrossRefGoogle Scholar
  36. [36]
    De Palma, R.; Laureyn, W.; Frederix, F.; Bonroy, K.; Pireaux, J. J.; Borghs, G.; Maes, G. Formation of dense self-assembled monolayers of (n-decyl)trichlorosilanes on Ta/Ta2O5. Langmuir 2007, 23, 443–451.CrossRefGoogle Scholar
  37. [37]
    Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21.CrossRefGoogle Scholar
  38. [38]
    Scott, A. W.; Garimella, V.; Calabrese, C. M.; Mirkin, C. A. Universal biotin–PEG-linked gold nanoparticle probes for the simultaneous detection of nucleic acids and proteins. Bioconjugate Chem. 2017, 28, 203–211.CrossRefGoogle Scholar
  39. [39]
    Li, Y. F.; Zhang, Y. M.; Wang, W. P. Phototriggered targeting of nanocarriers for drug delivery. Nano Res. 2018, 11, 5424–5438.CrossRefGoogle Scholar
  40. [40]
    Ling, D. S.; Lee, N.; Hyeon, T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 2015, 48, 1276–1285.CrossRefGoogle Scholar
  41. [41]
    Na, H. B.; Song, I. C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21, 2133–2148.CrossRefGoogle Scholar
  42. [42]
    Rejeeth, C.; Pang, X. C.; Zhang, R.; Xu, W.; Sun, X. M.; Liu, B.; Lou, J. T.; Wan, J. J.; Gu, H.; Yan, W. et al. Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core–shell particles. Nano Res. 2018, 11, 68–79.CrossRefGoogle Scholar
  43. [43]
    Cano, M.; De La Cueva-Méndez, G. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry. Chem. Commun. 2015, 51, 3620–3622.CrossRefGoogle Scholar
  44. [44]
    Jiang, J. K.; Oberdörster, G.; Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanoparticle Res. 2009, 11, 77–89.CrossRefGoogle Scholar
  45. [45]
    Gao, F. P.; Cai, Y. Y.; Zhou, J.; Xie, X. X.; Ouyang, W. W.; Zhang, Y. H.; Wang, X. F.; Zhang, X. D.; Wang, X. W.; Zhao, L. Y. et al. Pullulan acetate coated magnetite nanoparticles for hyper-thermia: Preparation, characterization and in vitro experiments. Nano Res. 2010, 3, 23–31.CrossRefGoogle Scholar
  46. [46]
    Xu, L. J.; Feng, Y.; Fan, Z. K.; Yun, D. C. Research into the grading method of kiwi fruit based on volume estimation and surface defect. INMATEH - Agric. Eng. 2014, 44, 93–102.Google Scholar
  47. [47]
    Li, Y. C.; Lin, Y. S.; Tsai, P. J.; Chen, C. T.; Chen, W. Y.; Chen, Y. C. Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal. Chem. 2007, 79, 7519–7525.CrossRefGoogle Scholar
  48. [48]
    Panja, P.; Das, P.; Mandal, K.; Jana, N. R. Hyperbranched polyglycerol grafting on the surface of silica-coated nanoparticles for high colloidal stability and low nonspecific interaction. ACS Sustainable Chem. Eng. 2017, 5, 4879–4889.CrossRefGoogle Scholar
  49. [49]
    Wang, J.; Shen, H. J.; Huang, C.; Ma, Q. Q.; Tan, Y. N.; Jiang, F. L.; Ma, C.; Yuan, Q. Highly efficient and multidimensional extraction of targets from complex matrices using aptamer-driven recognition. Nano Res. 2017, 10, 145–156.CrossRefGoogle Scholar
  50. [50]
    Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.CrossRefGoogle Scholar
  51. [51]
    Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.CrossRefGoogle Scholar
  52. [52]
    Wang, C.; Ye, Y. Q.; Hu, Q. Y.; Bellotti, A.; Gu, Z. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook. Adv. Mater. 2017, 29, 1606036.CrossRefGoogle Scholar
  53. [53]
    Greig, F. H.; Nixon, G. F. Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple disease states. Pharmacol. Ther. 2014, 143, 265–274.CrossRefGoogle Scholar
  54. [54]
    Lee, J.; Bartholomeusz, C.; Krishnamurthy, S.; Liu, P.; Saso, H.; Lafortune, T. A.; Hortobagyi, G. N.; Ueno, N. T. PEA-15 unphosphorylated at both serine 104 and serine 116 inhibits ovarian cancer cell tumorigenicity and progression through blocking β-catenin. Oncogenesis 2012, 1, e22.CrossRefGoogle Scholar
  55. [55]
    Xie, X. H.; Tang, H. L.; Liu, P.; Kong, Y. N.; Wu, M. Q.; Xiao, X. S.; Yang, L.; Gao, J.; Wei, W.; Lee, J. et al. Development of PEA-15 using a potent non-viral vector for therapeutic application in breast cancer. Cancer Lett. 2015, 356, 374–381.CrossRefGoogle Scholar
  56. [56]
    Cai, W. X.; Guner, H.; Gregorich, Z. R.; Chen, A. J.; Ayaz-Guner, S.; Peng, Y.; Valeja, S. G.; Liu, X. W.; Ge, Y. MASH suite pro: A comprehensive software tool for top-down proteomics. Mol. Cell. Proteomics 2016, 15, 703–714.CrossRefGoogle Scholar
  57. [57]
    Lee, S. H.; Seo, J.; Park, S. Y.; Jeong, M. H.; Choi, H. K.; Lee, C. J.; Kim, M. J.; Guk, G.; Lee, S.; Park, H. et al. Programmed cell death 5 suppresses AKT-mediated cytoprotection of endothelium. Proc. Natl. Acad. Sci. USA 2018, 115, 4672–4677.CrossRefGoogle Scholar
  58. [58]
    Park, S. Y.; Seo, J.; Choi, H. K.; Oh, H. J.; Guk, G.; Lee, Y. H.; Lee, J.; Jun, W. J.; Choi, K. C.; Yoon, H. G. Protein serine/threonine phosphatase PPEF-1 suppresses genotoxic stress response via dephosphorylation of PDCD5. Sci. Rep. 2017, 7, 39222.CrossRefGoogle Scholar
  59. [59]
    Kwak, S.; Lee, S. H.; Han, E. J.; Park, S. Y.; Jeong, M. H.; Seo, J.; Park, S. H.; Sung, G. J.; Yoo, J. Y.; Yoon, H. G. et al. Serine/threonine kinase 31 promotes PDCD5-mediated apoptosis in p53-dependent human colon cancer cells. J. Cell. Physiol. 2019, 234, 2649–2658.CrossRefGoogle Scholar
  60. [60]
    Gregorich, Z. R.; Cai, W. X.; Lin, Z. Q.; Chen, A. J.; Peng, Y.; Kohmoto, T.; Ge, Y. Distinct sequences and post-translational modifications in cardiac atrial and ventricular myosin light chains revealed by top-down mass spectrometry. J. Mol. Cell. Cardiol. 2017, 107, 13–21.CrossRefGoogle Scholar
  61. [61]
    Cai, W. X.; Tucholski, T.; Chen, B. F.; Alpert, A. J.; McIlwain, S.; Kohmoto, T.; Jin, S.; Ge, Y. Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal. Chem. 2017, 89, 5467–5475.CrossRefGoogle Scholar
  62. [62]
    Kinoshita, E.; Kinoshita-Kikuta, E.; Koike, T. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat. Protoc. 2009, 4, 1513–1521.CrossRefGoogle Scholar
  63. [63]
    Schmidt, S. R.; Schweikart, F.; Andersson, M. E. Current methods for phosphoprotein isolation and enrichment. J. Chromatogr. B 2007, 849, 154–162.CrossRefGoogle Scholar
  64. [64]
    Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258, 598–599.CrossRefGoogle Scholar
  65. [65]
    Kaur-Atwal, G.; Weston, D. J.; Bonner, P. L. R.; Crosland, S.; Green, P. S.; Creaser, C. S. Immobilised metal affinity chromatography for the analysis of proteins and peptides. Curr. Anal. Chem. 2008, 4, 127–135.CrossRefGoogle Scholar
  66. [66]
    Nita-Lazar, A.; Saito-Benz, H.; White, F. M. Quantitative phosphoproteomics by mass spectrometry: Past, present, and future. Proteomics 2008, 8, 4433–4443.CrossRefGoogle Scholar
  67. [67]
    Regnier, F. E.; Kim, J. Proteins and proteoforms: new separation challenges. Anal. Chem. 2018, 90, 361–373.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Cell and Regenerative BiologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations