Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Heterogeneous molecular catalysts for electrocatalytic CO2 reduction

Abstract

This review provides an overview of the literature regarding heterogeneous molecular catalysts for electrochemical CO2 reduction (ECR). Fundamental aspects of the science, including aggregation, electrochemical rate laws, and electrode-catalyst electronic coupling, are discussed to provide a solid foundation on which to design experiments and interpret results. Mechanistic aspects of ECR are presented based on electrokinetic and spectroscopic measurements as well as density functional theory (DFT) calculations. Consensus is improving for electrokinetic measurements, but the redox state of the metal center under reaction conditions and DFT reaction pathways lack agreement in the literature. Concerning the tunable aspects of the molecular catalyst, the impacts of the metal center, ligand substituents, and electrode support on the activity and selectivity toward ECR are presented with an emphasis on those studies that controlled for aggregation and minimized mass-transport limitations. Extended three-dimensional (3D) structures such as polymers, metal-organic frameworks (MOFs), and covalent-organic frameworks (COFs) are discussed as highly tunable architectures that begin to mimic the catalytic pockets of enzyme active sites. To achieve the full potential of these catalysts, design principles must emerge based on a combination of deconvoluting measurements to extract intrinsic catalyst properties and more reliable theoretical calculations to predict reaction pathways.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    IPCC. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C. B.; Barros, V. R.; Dokken, D. J.; Mach, K. J.; Mastrandrea, M. D.; Bilir, T. E.; Chatterjee, M.; Ebi, K. L.; Estrada, Y. O.; Genova, R. C. et al., Eds.; Cambridge University Press: Cambridge, UK and New York, 2014.

  2. [2]

    Spurgeon, J. M.; Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 2018, 11, 1536–1551.

  3. [3]

    Schiffer, Z. J.; Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 2017, 1, 10–14.

  4. [4]

    Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113.

  5. [5]

    Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

  6. [6]

    Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989.

  7. [7]

    Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

  8. [8]

    Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

  9. [9]

    Costentin, C.; Passard, G.; Robert, M.; Savéant, J. M. Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc. Natl. Acad. Sci. USA 2014, 111, 14990–14994.

  10. [10]

    Costentin, C.; Robert, M.; Savéant, J. M.; Tatin, A. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water. Proc. Natl. Acad. Sci. USA 2015, 112, 6882–6886.

  11. [11]

    Manbeck, G. F.; Fujita, E. A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide. J. Porphyr. Phthalocya. 2015, 19, 45–64.

  12. [12]

    Varela, A. S.; Ju, W.; Strasser, P. Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1703614.

  13. [13]

    Costamagna, J. A.; Isaacs, M.; Aguirre, M. J.; Ramirez, G.; Azocar, I. Electroreduction of CO2 catalyzed by metallomacrocyclics. In N 4-Macrocyclic Metal Complexes; Zagal, J. H.; Bedioui, F.; Dodelet, J. P., Eds.; Springer: New York, 2006; pp 191–254.

  14. [14]

    Inglis, J. L.; MacLean, B. J.; Pryce, M. T.; Vos, J. G. Electrocatalytic pathways towards sustainable fuel production from water and CO2. Coord. Chem. Rev. 2012, 256, 2571–2600.

  15. [15]

    Sun, C. F.; Gobetto, R.; Nervi, C. Recent advances in catalytic CO2 reduction by organometal complexes anchored on modified electrodes. New J. Chem. 2016, 40, 5656–5661.

  16. [16]

    Hori, Y. Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry; Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008; pp 89–189.

  17. [17]

    Li, F. W.; MacFarlane, D. R.; Zhang, J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 2018, 10, 6235–6260.

  18. [18]

    Pander III, J. E.; Ren, D.; Huang, Y.; Loo, N. W. X.; Hong, S. H. L.; Yeo, B. S. Understanding the heterogeneous electrocatalytic reduction of carbon dioxide on oxide-derived catalysts. ChemElectroChem 2018, 5, 219–237.

  19. [19]

    Strasser, P.; Gliech, M.; Kuehl, S.; Moeller, T. Electrochemical processes on solid shaped nanoparticles with defined facets. Chem. Soc. Rev. 2018, 47, 715–735.

  20. [20]

    Wu, J. J.; Sharifi, T.; Gao, Y.; Zhang, T. Y.; Ajayan, P. M. Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv. Mater. 2019, 31, 1804257.

  21. [21]

    Bonin, J.; Maurin, A.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coord. Chem. Rev. 2017, 334, 184–198.

  22. [22]

    Costentin, C.; Robert, M.; Savéant, J. M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 2013, 42, 2423–2436.

  23. [23]

    Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z.S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

  24. [24]

    Oh, S.; Gallagher, J. R.; Miller, J. T.; Surendranath, Y. Graphite-conjugated rhenium catalysts for carbon dioxide reduction. J. Am. Chem. Soc. 2016, 138, 1820–1823.

  25. [25]

    Hu, X. M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem., Int. Ed. 2017, 56, 6468–6472.

  26. [26]

    Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A classification problem. ChemPhysChem 2017, 18, 3266–3273.

  27. [27]

    Pan, F. P.; Deng, W.; Justiniano, C.; Li, Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B Environ. 2018, 226, 463–472.

  28. [28]

    Chen, L. J.; Guo, Z. G.; Wei, X. G.; Gallenkamp, C.; Bonin, J.; Anxolabéhère-Mallart, E.; Lau, K. C.; Lau, T. C.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with earth-abundant metal complexes. Selective production of CO vs HCOOH by switching of the metal center. J. Am. Chem. Soc. 2015, 137, 10918–10921.

  29. [29]

    Meshitsuka, S.; Ichikawa, M.; Tamaru, K. Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. J. Chem. Soc. Chem. Commun. 1974, 158–159.

  30. [30]

    Kapusta, S.; Hackerman, N. Carbon dioxide reduction at a metal phthalocyanine catalyzed carbon electrode. J. Electrochem. Soc. 1984, 131, 1511–1514.

  31. [31]

    Tanabe, H.; Ohno, K. Electrocatalysis of metal phthalocyanine thin film prepared by the plasma-assisted deposition on a glassy carbon in the reduction of carbon dioxide. Electrochim. Acta 1987, 32, 1121–1124.

  32. [32]

    Furuya, N.; Matsui, K. Electroreduction of carbon dioxide on gas-diffusion electrodes modified by metal phthalocyanines. J. Electroanal. Chem. Interfacial Electrochem. 1989, 271, 181–191.

  33. [33]

    Furuya, N.; Koide, S. Electroreduction of carbon dioxide by metal phthalocyanines. Electrochim. Acta 1991, 36, 1309–1313.

  34. [34]

    Sonoyama, N.; Kirii, M.; Sakata, T. Electrochemical reduction of CO2 at metal-porphyrin supported gas diffusion electrodes under high pressure CO2. Electrochem. Commun. 1999, 1, 213–216.

  35. [35]

    Birdja, Y. Y.; Shen, J.; Koper, M. T. M. Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid. Catal. Today 2017, 288, 37–47.

  36. [36]

    Wu, Y. S.; Jiang, J. B.; Weng, Z.; Wang, M. Y.; Broere, D. L. J.; Zhong, Y. R.; Brudvig, G. W.; Feng, Z. X.; Wang, H. L. Electroreduction of CO2 catalyzed by a heterogenized Zn-porphyrin complex with a redox-innocent metal center. ACS Cent. Sci. 2017, 3, 847–852.

  37. [37]

    Mahmood, M. N.; Masheder, D.; Harty, C. J. Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. II. Reduction at metal phthalocyanine-impregnated electrodes. J. Appl. Electrochem. 1987, 17, 1223–1227.

  38. [38]

    Lawton, E. A. The thermal stability of copper phthalocyanine. J. Phys. Chem. 1958, 62, 384.

  39. [39]

    Sabik, A.; Golek, F.; Antczak, G. Thermal desorption and stability of cobalt phthalocyanine on Ag(100). Appl. Surf. Sci. 2018, 435, 894–902.

  40. [40]

    Scardamaglia, M.; Struzzi, C.; Lizzit, S.; Dalmiglio, M.; Lacovig, P.; Baraldi, A.; Mariani, C.; Betti, M. G. Energetics and hierarchical interactions of metal-phthalocyanines adsorbed on graphene/Ir(111). Langmuir 2013, 29, 10440–10447.

  41. [41]

    Magdesieva, T. V.; Butin, K. P.; Yamamoto, T.; Tryk, D. A.; Fujishima, A. Lutetium monophthalocyanine and diphthalocyanine complexes and lithium naphthalocyanine as catalysts for electrochemical CO2 reduction. J. Electrochem. Soc. 2003, 150, E608–E612.

  42. [42]

    Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.

  43. [43]

    Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076–8079.

  44. [44]

    Kusama, S.; Saito, T.; Hashiba, H.; Sakai, A.; Yotsuhashi, S. Crystalline copper(II) phthalocyanine catalysts for electrochemical reduction of carbon dioxide in aqueous media. ACS Catal. 2017, 7, 8382–8385.

  45. [45]

    Cheng, Y.; Veder, J. P.; Thomsen, L.; Zhao, S. Y.; Saunders, M.; Demichelis, R.; Liu, C.; De Marco, R.; Jiang, S. P. Electrochemically substituted metal phthalocyanines, e-MPc (M = Co, Ni), as highly active and selective catalysts for CO2 reduction. J. Mater. Chem. A 2018, 6, 1370–1375.

  46. [46]

    Ruan, C. Y.; Mastryukov, V.; Fink, M. Electron diffraction studies of metal phthalocyanines, MPc, where M = Sn, Mg, and Zn (reinvestigation). J. Chem. Phys. 1999, 111, 3035–3041.

  47. [47]

    Kaeffer, N.; Chavarot-Kerlidou, M.; Artero, V. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes. Acc. Chem. Res. 2015, 48, 1286–1295.

  48. [48]

    Lee, C. W.; Cho, N. H.; Yang, K. D.; Nam, K. T. Reaction mechanisms of the electrochemical conversion of carbon dioxide to formic acid on tin oxide electrodes. ChemElectroChem 2017, 4, 2130–2136.

  49. [49]

    Lee, C. H.; Kanan, M. W. Controlling H+ vs. CO2 reduction selectivity on Pb electrodes. ACS Catal. 2015, 5, 465–469.

  50. [50]

    Luo, W.; Xie, W.; Li, M.; Züttel, A. 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO2. J. Mater. Chem. A 2019, 7, 4505–4515.

  51. [51]

    Zhu, W. J.; Zhang, L.; Yang, P. P.; Hu, C. L.; Luo, Z. B.; Chang, X. X.; Zhao, Z. J.; Gong, J. L. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angew. Chem., Int. Ed. 2018, 57, 11544–11548.

  52. [52]

    Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833–1839.

  53. [53]

    Wallace, A. J.; Williamson, B. E.; Crittenden, D. L. CASSCF-based explicit ligand field models clarify the ground state electronic structures of transition metal phthalocyanines (MPc; M = Mn, Fe, Co, Ni, Cu, Zn). Can. J. Chem. 2016, 94, 1163–1168.

  54. [54]

    Brumboiu, I. E.; Prokopiou, G.; Kronik, L.; Brena, B. Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional. J. Chem. Phys. 2017, 147, 044301.

  55. [55]

    Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons, Ltd: Chichester, 2007.

  56. [56]

    Zhang, Z.; Xiao, J. P.; Chen, X. J.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S.; Meng, X. G.; Wang, Y. et al. Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 16339–16342.

  57. [57]

    Zhu, M. H.; Ye, R. Q.; Jin, K.; Lazouski, N.; Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 2018, 3, 1381–1386.

  58. [58]

    Liu, J. H.; Yang, L. M.; Ganz, E. Efficient and selective electroreduction of CO2 by single-atom catalyst two-dimensional TM-Pc monolayers. ACS Sustainable Chem. Eng. 2018, 6, 15494–15502.

  59. [59]

    Göttle, A. J.; Koper, M. T. M. Determinant role of electrogenerated reactive nucleophilic species on selectivity during reduction of CO2 catalyzed by metalloporphyrins. J. Am. Chem. Soc. 2018, 140, 4826–4834.

  60. [60]

    Costentin, C.; Passard, G.; Savéant, J. M. Benchmarking of homogeneous electrocatalysts: Overpotential, turnover frequency, limiting turnover number. J. Am. Chem. Soc. 2015, 137, 5461–5467.

  61. [61]

    Abe, T.; Imaya, H.; Yoshida, T.; Tokita, S.; Schlettwein, D.; Wöhrle, D.; Kaneko, M. Electrochemical CO2 reduction catalysed by cobalt octacyanophthalocyanine and its mechanism. J. Porphyr. Phthalocya. 1997, 1, 315–321.

  62. [62]

    Mizuguchi, J. π-π interactions of magnesium phthalocyanine as evaluated by energy partition analysis. J. Phys. Chem. A 2001, 105, 10719–10722.

  63. [63]

    Bottari, G.; Ballesteros, B.; Collado, J. F.; Torres, T. Hydrogen-bonding and pi-stacking induced self-assembly of picolinic acid-substituted phthalocyanine derivatives. In Proceedings of the 227th ECS Meeting, Chicago, 2015, p 996.

  64. [64]

    Boulatov, R.; Collman, J. P.; Shiryaeva, I. M.; Sunderland, C. J. Functional analogues of the dioxygen reduction site in cytochrome oxidase: Mechanistic aspects and possible effects of CuB. J. Am. Chem. Soc. 2002, 124, 11923–11935.

  65. [65]

    Ghani, F.; Kristen, J.; Riegler, H. Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. J. Chem. Eng. Data 2012, 57, 439–449.

  66. [66]

    Cheng, Z. H.; Cui, N.; Zhang, H. X.; Zhu, L. J.; Xia, D. H. Synthesis and dimerization behavior of five metallophthalocyanines in different solvents. Adv. Mater. Sci. Eng. 2014, 2014, 914916.

  67. [67]

    Choi, J.; Wagner, P.; Gambhir, S.; Jalili, R.; Macfarlane, D. R.; Wallace, G. G.; Officer, D. L. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 2019, 4, 666–672.

  68. [68]

    Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

  69. [69]

    Zeng, Y.; Bai, P.; Smith, R. B.; Bazant, M. Z. Simple formula for asymmetric Marcus-Hush kinetics. J. Electroanal. Chem. 2015, 748, 52–57.

  70. [70]

    Marcus, R. A. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 1965, 43, 679–701.

  71. [71]

    Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: New York, 2001.

  72. [72]

    Zhu, M. H.; Yang, D. T.; Ye, R. Q.; Zeng, J.; Corbin, N.; Manthiram, K. Inductive and electrostatic effects on cobalt porphyrins for heterogeneous electrocatalytic carbon dioxide reduction. Catal. Sci. Technol. 2019, 9, 974–980.

  73. [73]

    Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

  74. [74]

    Wuttig, A.; Yoon, Y.; Ryu, J.; Surendranath, Y. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 2017, 139, 17109–17113.

  75. [75]

    Chlistunoff, J. RRDE and voltammetric study of ORR on pyrolyzed Fe/polyaniline catalyst. On the origins of variable tafel slopes. J. Phys. Chem. C 2011, 115, 6496–6507.

  76. [76]

    Singh, M. R.; Clark, E. L.; Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 2015, 17, 18924–18936.

  77. [77]

    Raciti, D.; Mao, M.; Park, J. H.; Wang, C. Mass transfer effects in CO2 reduction on Cu nanowire electrocatalysts. Catal. Sci. Technol. 2018, 8, 2364–2369.

  78. [78]

    Dunwell, M.; Yang, X.; Setzler, B. P.; Anibal, J.; Yan, Y. S.; Xu, B. J. Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy. ACS Catal. 2018, 8, 3999–4008.

  79. [79]

    Ryu, J.; Wuttig, A.; Surendranath, Y. Quantification of interfacial pH variation at molecular length scales using a concurrent non-faradaic reaction. Angew. Chem., Int. Ed. 2018, 57, 9300–9304.

  80. [80]

    Harris, D. C. Quantitative Chemical Analysis, 7th ed.; W. H. Freeman and Company: New York, 2007.

  81. [81]

    Weisenberger, S.; Schumpe, A. Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K. AIChE J. 1996, 42, 298–300.

  82. [82]

    Schowen, R. L. Hydrogen bonds, transition-state stabilization, and enzyme catalysis. In Isotope Effects in Chemistry and Biology; Kohen, A.; Limbach, H. H., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, Florida, USA, 2005; pp 765–792.

  83. [83]

    Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

  84. [84]

    Zhu, M. H.; Chen, J. C.; Huang, L. B.; Ye, R. Q.; Xu, J.; Han, Y. F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem., Int. Ed., in press, DOI: https://doi.org/10.1002/ANIE.201900499.

  85. [85]

    Morlanés, N.; Takanabe, K.; Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 2016, 6, 3092–3095.

  86. [86]

    Chebotareva, N.; Nyokong, T. Metallophthalocyanine catalysed electroreduction of nitrate and nitrite ions in alkaline media. J. Appl. Electrochem. 1997, 27, 975–981.

  87. [87]

    Jackson, M. N.; Oh, S.; Kaminsky, C. J.; Chu, S. B.; Zhang, G. H.; Miller, J. T.; Surendranath, Y. Strong electronic coupling of molecular sites to graphitic electrodes via pyrazine conjugation. J. Am. Chem. Soc. 2018, 140, 1004–1010.

  88. [88]

    Schmickler, W.; Santos, E. Interfacial Electrochemistry; Springer: Berlin, 2010.

  89. [89]

    Lieber, C. M.; Lewis, N. S. Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine. J. Am. Chem. Soc. 1984, 106, 5033–5034.

  90. [90]

    Yoshida, T.; Kamato, K.; Tsukamoto, M.; Iida, T.; Schlettwein, D.; Wöhrle, D.; Kaneko, M. Selective electroacatalysis for CO2 reduction in the aqueous phase using cobalt phthalocyanine/poly-4-vinylpyridine modified electrodes. J. Electroanal. Chem. 1995, 385, 209–225.

  91. [91]

    Abe, T.; Yoshida, T.; Tokita, S.; Taguchi, F.; Imaya, H.; Kaneko, M. Factors affecting selective electrocatalytic CO2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode. J. Electroanal. Chem. 1996, 472, 125–132.

  92. [92]

    Aga, H.; Aramata, A.; Hisaeda, Y. The electroreduction of carbon dioxide by macrocyclic cobalt complexes chemically modified on a glassy carbon electrode. J. Electroanal. Chem. 1997, 437, 111–118.

  93. [93]

    Christensen, P. A.; Hamnett, A.; Muir, A. V. G. An in-situ FTIR study of the electroreduction of CO2 by CoPc-coated edge graphite electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1988, 247, 361–371.

  94. [94]

    Atoguchi, T.; Aramata, A.; Kazusaka, A.; Enyo, M. Electrocatalytic activity of CoII TPP-pyridine complex modified carbon electrode for CO2 reduction. J. Electroanal. Chem. Interfacial Electrochem. 1991, 318, 309–320.

  95. [95]

    Atoguchi, T.; Aramata, A.; Kazusaka, A.; Enyo, M. Cobalt(II)-tetraphenylporphyrin-pyridine complex fixed on a glassy carbon electrode and its prominent catalytic activity for reduction of carbon dioxide. J. Chem. Soc. Chem. Commun. 1991, 156–157.

  96. [96]

    Tanaka, H.; Aramata, A. Aminopyridyl cation radical method for bridging between metal complex and glassy carbon: Cobalt(II) tetraphenylporphyrin bonded on glassy carbon for enhancement of CO2 electroreduction. J. Electroanal. Chem. 1997, 437, 29–35.

  97. [97]

    Abe, T.; Taguchi, F.; Yoshida, T.; Tokita, S.; Schnurpfeil, G.; Wöhrle, D.; Kaneko, M. Electrocatalytic CO2 reduction by cobalt octabutoxyphthalocyanine coated on graphite electrode. J. Mol. Catal. A Chem. 1996, 112, 55–61.

  98. [98]

    Kornienko, N.; Zhao, Y. B.; Kley, C. S.; Zhu, C. H.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. D. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129–14135.

  99. [99]

    Toray Carbon Fiber Paper “TGP-H” [Online]. https://www.fuelcellsetc.com/store/DS/Toray-Paper-TGP-H-Datasheet.pdf (accessed Feb 11, 2019).

  100. [100]

    Pander III, J. E.; Fogg, A.; Bocarsly, A. B. Utilization of electropolymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media. ChemCatChem 2016, 8, 3536–3545.

  101. [101]

    Reuillard, B.; Ly, K. H.; Rosser, T. E.; Kuehnel, M. F.; Zebger, I.; Reisner, E. Tuning product selectivity for aqueous CO2 reduction with a Mn(bipyridine)-pyrene catalyst immobilized on a carbon nanotube electrode. J. Am. Chem. Soc. 2017, 139, 14425–14435.

  102. [102]

    Rosser, T. E.; Windle, C. D.; Reisner, E. Electrocatalytic and solar-driven CO2 reduction to CO with a molecular manganese catalyst immobilized on mesoporous TiO2. Angew. Chem., Int. Ed. 2016, 55, 7388–7392.

  103. [103]

    Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal. Today 2017, 288, 74–78.

  104. [104]

    Zhang, Y. J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 2014, 4, 3742–3748.

  105. [105]

    Wellendorff, J.; Lundgaard, K. T.; Møgelhøj, A.; Petzold, V.; Landis, D. D.; Nørskov, J. K.; Bligaard, T.; Jacobsen, K. W. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 2012, 85, 235149.

  106. [106]

    Shen, J.; Kolb, M. J.; Göttle, A. J.; Koper, M. T. M. DFT study on the mechanism of the electrochemical reduction of CO2 catalyzed by cobalt porphyrins. J. Phys. Chem. C 2016, 120, 15714–15721.

  107. [107]

    Nielsen, I. M. B.; Leung, K. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 1. A density functional study of intermediates. J. Phys. Chem. A 2010, 114, 10166–10173.

  108. [108]

    Leung, K.; Nielsen, I. M. B.; Sai, N.; Medforth, C.; Shelnutt, J. A. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. Mechanism from first principles. J. Phys. Chem. A 2010, 114, 10174–10184.

  109. [109]

    Göttle, A. J.; Koper, M. T. M. Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: Prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 2017, 8, 458–465.

  110. [110]

    Shen, J.; Kortlever, R.; Kas, R.; Birdja, Y. Y.; Diaz-Morales, O.; Kwon, Y.; Ledezma-Yanez, I.; Schouten, K. J. P.; Mul, G.; Koper, M. T. M. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 2015, 6, 8177.

  111. [111]

    Yao, C. L.; Li, J. C.; Gao, W.; Jiang, Q. Cobalt-porphine catalyzed CO2 electro-reduction: A novel protonation mechanism. Phys. Chem. Chem. Phys. 2017, 19, 15067–15072.

  112. [112]

    Jensen, K. P.; Ryde, U. Theoretical prediction of the Co-C bond strength in cobalamins. J. Phys. Chem. A 2003, 107, 7539–7545.

  113. [113]

    Kusuda, K.; Ishihara, R.; Yamaguchi, H.; Izumi, I. Electrochemical investigation of thin films of cobalt phthalocyanine and cobalt-4,4′,4″,4′″-tetracarboxyphthalocyanine and the reduction of carbon monoxide, formic acid and formaldehyde mediated by the Co(I) complexes. Electrochim. Acta 1986, 31, 657–663.

  114. [114]

    Szkaradek, K.; Buzar, K.; Pidko, E. A.; Szyja, B. M. Supported Ru metalloporphyrins for electrocatalytic CO2 conversion. ChemCatChem 2018, 10, 1814–1820.

  115. [115]

    Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 2017, 139, 11277–11287.

  116. [116]

    Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

  117. [117]

    Thorson, M. R.; Siil, K. I.; Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 2013, 160, F69–F74.

  118. [118]

    Murata, A.; Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 1991, 64, 123–127.

  119. [119]

    Kyriacou, G. Z.; Anagnostopoulos, A. K. Influence CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction. J. Appl. Electrochem. 1993, 23, 483–486.

  120. [120]

    Schizodimou, A.; Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 2012, 78, 171–176.

  121. [121]

    Kaneco, S.; Iiba, K.; Katsumata, H.; Suzuki, T.; Ohta, K. Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol. J. Solid State Electrochem. 2007, 11, 490–495.

  122. [122]

    Pérez-Gallent, E.; Marcandalli, G.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 2017, 139, 16412–16419.

  123. [123]

    Ikemiya, N.; Natsui, K.; Nakata, K.; Einaga, Y. Effect of alkali-metal cations on the electrochemical reduction of carbon dioxide to formic acid using boron-doped diamond electrodes. RSC Adv. 2017, 7, 22510–22514.

  124. [124]

    Chen, L. D.; Urushihara, M.; Chan, K.; Norskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 2016, 6, 7133–7139.

  125. [125]

    Zhao, C. X.; Bu, Y. F.; Gao, W.; Jiang, Q. CO2 reduction mechanism on the Pb(111) surface: Effect of solvent and cations. J. Phys. Chem. C 2017, 121, 19767–19773.

  126. [126]

    Hammouche, M.; Lexa, D.; Momenteau, M.; Saveant, J. M. Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins. Role of the addition of magnesium cations. J. Am. Chem. Soc. 1991, 113, 8455–8466.

  127. [127]

    Shen, J.; Lan, D. H.; Yang, T. J. Influence of supporting electrolyte on the electrocatalysis of CO2 reduction by cobalt protoporphyrin. Int. J. Electrochem. Sci. 2018, 13, 9847–9857.

  128. [128]

    Miyamoto, K.; Asahi, R. Cation impact on cobalt-porphyrin catalyzed electrochemical reduction of CO2 [Online]. 2018. https://arxiv.org/pdf/1806.10285.pdf (accessed Feb 18, 2019).

  129. [129]

    Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J. M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 2016, 138, 16639–16644.

  130. [130]

    DeLuca, E. E.; Xu, Z.; Lam, J.; Wolf, M. O. Improved electrocatalytic CO2 reduction with palladium bis(NHC) pincer complexes bearing cationic side chains. Organometallics 2019, 38, 1330–1343.

  131. [131]

    Zahran, Z. N.; Mohamed, E. A.; Naruta, Y. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings. Sci. Rep. 2016, 6, 24533.

  132. [132]

    Ochoa, G.; Geraldo, D.; Linares, C.; Nyokong, T.; Bedioui, F.; Zagal, J. H. Tuning the formal potential of metallomacrocyclics for maximum catalytic activity for the oxidation of thiols and hydrazine. ECS Trans. 2009, 19, 97–112.

  133. [133]

    Bedioui, F.; Griveau, S.; Nyokong, T.; John Appleby, A.; Caro, C. A.; Gulppi, M.; Ochoa, G.; Zagal, J. H. Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys. Chem. Chem. Phys. 2007, 9, 3383–3396.

  134. [134]

    Villagra, E.; Bedioui, F.; Nyokong, T.; Canales, J. C.; Sancy, M.; Páez, M. A.; Costamagna, J.; Zagal, J. H. Tuning the redox properties of Co-N4 macrocyclic complexes for the catalytic electrooxidation of glucose. Electrochim. Acta 2008, 53, 4883–4888.

  135. [135]

    Geraldo, D.; Linares, C.; Chen, Y. Y.; Ureta-Zañartu, S.; Zagal, J. H. Volcano correlations between formal potential and Hammett parameters of substituted cobalt phthalocyanines and their activity for hydrazine electro-oxidation. Electrochem. Commun. 2002, 4, 182–187.

  136. [136]

    Aguirre, M. J.; Isaacs, M.; Armijo, F.; Basáez, L.; Zagal, J. H. Effect of the substituents on the ligand of iron phthalocyanines adsorbed on graphite electrodes on their activity for the electrooxidation of 2-mercaptoethanol. Electroanalysis 2002, 14, 356–362.

  137. [137]

    Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

  138. [138]

    Hansch, C.; Leo, A.; Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195.

  139. [139]

    Magdesieva, T. V.; Yamamoto, T.; Tryk, D. A.; Fujishima, A. Electrochemical reduction of CO2 with transition metal phthalocyanine and porphyrin complexes supported on activated carbon fibers. J. Electrochem. Soc. 2002, 149, D89–D95.

  140. [140]

    Tornow, C. E.; Thorson, M. R.; Ma, S. C.; Gewirth, A. A.; Kenis, P. J. A. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J. Am. Chem. Soc. 2012, 134, 19520–19523.

  141. [141]

    Petraki, F.; Peisert, H.; Biswas, I.; Aygül, U.; Latteyer, F.; Vollmer, A.; Chassé, T. Interaction between cobalt phthalocyanine and gold studied by X-ray absorption and resonant photoemission spectroscopy. J. Phys. Chem. Lett. 2010, 1, 3380–3384.

  142. [142]

    Petraki, F.; Peisert, H.; Biswas, I.; Chassé, T. Electronic structure of Co-phthalocyanine on gold investigated by photoexcited electron spectroscopies: Indication of Co ion-metal interaction. J. Phys. Chem. C 2010, 114, 17638–17643.

  143. [143]

    Petraki, F.; Peisert, H.; Aygül, U.; Latteyer, F.; Uihlein, J.; Vollmer, A.; Chassé, T. Electronic structure of FePc and interface properties on Ag(111) and Au(100). J. Phys. Chem. C 2012, 116, 11110–11116.

  144. [144]

    Uihlein, J.; Peisert, H.; Glaser, M.; Polek, M.; Adler, H.; Petraki, F.; Ovsyannikov, R.; Bauer, M.; Chassé, T. Communication: Influence of graphene interlayers on the interaction between cobalt phthalocyanine and Ni(111). J. Chem. Phys. 2013, 138, 081101.

  145. [145]

    Duncan, D. A.; Deimel, P. S.; Wiengarten, A.; Han, R. Y.; Acres, R. G.; Auwärter, W.; Feulner, P.; Papageorgiou, A. C.; Allegretti, F.; Barth, J. V. Immobilised molecular catalysts and the role of the supporting metal substrate. Chem. Commun. 2015, 51, 9483–9486.

  146. [146]

    Walsh, J. J.; Smith, C. L.; Neri, G.; Whitehead, G. F. S.; Robertson, C. M.; Cowan, A. J. Improving the efficiency of electrochemical CO2 reduction using immobilized manganese complexes. Faraday Discuss. 2015, 183, 147–160.

  147. [147]

    Birdja, Y. Y.; Vos, R. E.; Wezendonk, T. A.; Jiang, L.; Kapteijn, F.; Koper, M. T. M. Effects of substrate and polymer encapsulation on CO2 electroreduction by immobilized indium(III) protoporphyrin. ACS Catal. 2018, 8, 4420–4428.

  148. [148]

    Zhao, H. Z.; Chang, Y. Y.; Liu, C. Electrodes modified with iron porphyrin and carbon nanotubes: application to CO2 reduction and mechanism of synergistic electrocatalysis. J. Solid State Electrochem. 2013, 17, 1657–1664.

  149. [149]

    Aoi, S.; Mase, K.; Ohkubo, K.; Fukuzumi, S. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water. Chem. Commun. 2015, 51, 10226–10228.

  150. [150]

    Choi, J.; Wagner, P.; Jalili, R.; Kim, J.; MacFarlane, D. R.; Wallace, G. G.; Officer, D. L. A porphyrin/graphene framework: A highly efficient and robust electrocatalyst for carbon dioxide reduction. Adv. Energy Mater. 2018, 8, 1801280.

  151. [151]

    Yamanaka, I.; Tabata, K.; Mino, W.; Furusawa, T. Electroreduction of carbon dioxide to carbon monoxide by Co-pthalocyanine electrocatalyst under ambient conditions. ISIJ Int. 2015, 55, 399–403.

  152. [152]

    He, L.; Sun, X. F.; Zhang, H.; Shao, F. W. G-quadruplex nanowires to direct the efficiency and selectivity of electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 12453–12457.

  153. [153]

    Chen, C. J.; Sun, X. F.; Yang, D. X.; Lu, L.; Wu, H. H.; Zheng, L. R.; An, P. F.; Zhang, J.; Han, B. X. Enhanced CO2 electroreduction via interaction of dangling S bonds and Co sites in cobalt phthalocyanine/ZnIn2S4 hybrids. Chem. Sci. 2019, 10, 1659–1663.

  154. [154]

    Zhao, F.; Zhang, J.; Abe, T.; Wöhrle, D.; Kaneko, M. Electrocatalytic proton reduction by phthalocyanine cobalt derivatives incorporated in poly(4-vinylpyridine-co-styrene) film. J. Mol. Catal. A Chem. 1999, 145, 245–256.

  155. [155]

    Kramer, W. W.; McCrory, C. C. L. Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 2016, 7, 2506–2515.

  156. [156]

    Buttry, D. A.; Anson, F. C. New strategies for electrocatalysis at polymer-coated electrodes. Reduction of dioxygen by cobalt porphyrins immobilized in Nafion coatings on graphite electrodes. J. Am. Chem. Soc. 1984, 106, 59–64.

  157. [157]

    Jarzębińska, A.; Rowiński, P.; Zawisza, I.; Bilewicz, R.; Siegfried, L.; Kaden, T. Modified electrode surfaces for catalytic reduction of carbon dioxide. Anal. Chim. Acta 1999, 396, 1–12.

  158. [158]

    Ramirez, G.; Ferraudi, G.; Chen, Y. Y.; Trollund, E.; Villagra, D. Enhanced photoelectrochemical catalysis of CO2 reduction mediated by a supramolecular electrode of packed CoII(tetrabenzoporphyrin). Inorganica Chim. Acta 2009, 362, 5–10.

  159. [159]

    Ramirez, G.; Lucero, M.; Riquelme, A.; Villagrán, M.; Costamagna, J.; Trollund, E.; Aguirre, M. J. A supramolecular cobalt-porphyrin-modified electrode, toward the electroreduction of CO2. J. Coord. Chem. 2004, 57, 249–255.

  160. [160]

    Elgrishi, N.; Griveau, S.; Chambers, M. B.; Bedioui, F.; Fontecave, M. Versatile functionalization of carbon electrodes with a polypyridine ligand: Metallation and electrocatalytic H+ and CO2 reduction. Chem. Commun. 2015, 51, 2995–2998.

  161. [161]

    Maurin, A.; Robert, M. Catalytic CO2-to-CO conversion in water by covalently functionalized carbon nanotubes with a molecular iron catalyst. Chem. Commun. 2016, 52, 12084–12087.

  162. [162]

    Yao, S. A.; Ruther, R. E.; Zhang, L. H.; Franking, R. A.; Hamers, R. J.; Berry, J. F. Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “smart” electrodes. J. Am. Chem. Soc. 2012, 134, 15632–15635.

  163. [163]

    Thorogood, C. A.; Wildgoose, G. G.; Crossley, A.; Jacobs, R. M. J.; Jones, J. H.; Compton, R. G. Differentiating between ortho- and para-quinone surface groups on graphite, glassy carbon, and carbon nanotubes using organic and inorganic voltammetric and X-ray photoelectron spectroscopy labels. Chem. Mater. 2007, 19, 4964–4974.

  164. [164]

    Wang, Y.; Marquard, S. L.; Wang, D. G.; Dares, C.; Meyer, T. J. Single-site, heterogeneous electrocatalytic reduction of CO2 in water as the solvent. ACS Energy Lett. 2017, 2, 1395–1399.

  165. [165]

    Mohamed, E. A.; Zahran, Z. N.; Naruta, Y. Efficient heterogeneous CO2 to CO conversion with a phosphonic acid fabricated cofacial iron porphyrin dimer. Chem. Mater. 2017, 29, 7140–7150.

  166. [166]

    Maurin, A.; Robert, M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J. Am. Chem. Soc. 2016, 138, 2492–2495.

  167. [167]

    Kang, P.; Zhang, S.; Meyer, T. J.; Brookhart, M. Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes. Angew. Chem., Int. Ed. 2014, 53, 8709–8713.

  168. [168]

    Blakemore, J. D.; Gupta, A.; Warren, J. J.; Brunschwig, B. S.; Gray, H. B. Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production. J. Am. Chem. Soc. 2013, 135, 18288–18291.

  169. [169]

    Fukuzumi, S.; Lee, Y. M.; Nam, W. Immobilization of molecular catalysts for enhanced redox catalysis. ChemCatChem 2018, 10, 1686–1702.

  170. [170]

    Bullock, R. M.; Das, A. K.; Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem.—Eur. J. 2017, 23, 7626–7641.

  171. [171]

    Louis, M. E.; Fenton, T. G.; Rondeau, J.; Jin, T.; Li, G. H. Solar CO2 reduction using surface-immobilized molecular catalysts. Comments Inorg. Chem. 2016, 36, 38–60.

  172. [172]

    Cai, X.; Liu, H. Y.; Wei, X.; Yin, Z. L.; Chu, J.; Tang, M. L.; Zhuang, L.; Deng, H. X. Molecularly defined interface created by porous polymeric networks on gold surface for concerted and selective CO2 reduction. ACS Sustainable Chem. Eng. 2018, 6, 17277–17283.

  173. [173]

    Cave, E. R.; Montoya, J. H.; Kuhl, K. P.; Abram, D. N.; Hatsukade, T.; Shi, C.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Electrochemical CO2 reduction on Au surfaces: Mechanistic aspects regarding the formation of major and minor products. Phys. Chem. Chem. Phys. 2017, 19, 15856–15863.

  174. [174]

    Hori, Y.; Murata, A.; Kikuchi, K.; Suzuki, S. Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate. J. Chem. Soc. Chem. Commun. 1987, 728–729.

  175. [175]

    Cao, Z.; Zacate, S. B.; Sun, X. D.; Liu, J. J.; Hale, E. M.; Carson, W. P.; Tyndall, S. B.; Xu, J.; Liu, X. W.; Liu, X. C. et al. Tuning gold nanoparticles with chelating ligands for highly efficient electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 12675–12679.

  176. [176]

    Gong, M.; Cao, Z.; Liu, W.; Nichols, E. M.; Smith, P. T.; Derrick, J. S.; Liu, Y. S.; Liu, J. J.; Wen, X. D.; Chang, C. J. Supramolecular porphyrin cages assembled at molecular-materials interfaces for electrocatalytic CO reduction. ACS Cent. Sci. 2017, 3, 1032–1040.

  177. [177]

    Tatin, A.; Comminges, C.; Kokoh, B.; Costentin, C.; Robert, M.; Savéant, J. M. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials. Proc. Natl. Acad. Sci. USA 2016, 113, 5526–5529.

  178. [178]

    Marianov, A. N.; Jiang, Y. J. Covalent ligation of Co molecular catalyst to carbon cloth for efficient electroreduction of CO2 in water. Appl. Catal. B Environ. 2019, 244, 881–888.

  179. [179]

    Kapusta, S.; Hackerman, N. The electroreduction of carbon dioxide and formic acid on tin and indium electrodes. J. Electrochem. Soc. 1983, 130, 607–613.

  180. [180]

    Dominguez-Ramos, A.; Singh, B.; Zhang, X.; Hertwich, E. G.; Irabien, A. Global warming footprint of the electrochemical reduction of carbon dioxide to formate. J. Clean. Prod. 2015, 104, 148–155.

  181. [181]

    Jiang, J. B.; Matula, A. J.; Swierk, J. R.; Romano, N.; Wu, Y. S.; Batista, V. S.; Crabtree, R. H.; Lindsey, J. S.; Wang, H. L.; Brudvig, G. W. Unusual stability of a bacteriochlorin electrocatalyst under reductive conditions. A case study on CO2 conversion to CO. ACS Catal. 2018, 8, 10131–10136.

  182. [182]

    Bruhn, T.; Brückner, C. Origin of the regioselective reduction of chlorins. J. Org. Chem. 2015, 80, 4861–4868.

  183. [183]

    Jiang, J. B.; Materna, K. L.; Hedström, S.; Yang, K. R.; Crabtree, R. H.; Batista, V. S.; Brudvig, G. W. Antimony complexes for electrocatalysis: Activity of a main-group element in proton reduction. Angew. Chem., Int. Ed. 2017, 56, 9111–9115.

  184. [184]

    Verma, S.; Kim, B.; Jhong, H. R. M.; Ma, S. C.; Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 2016, 9, 1972–1979.

  185. [185]

    Mahmood, A.; Guo, W. H.; Tabassum, H.; Zou, R. Q. Metal-organic framework-based nanomaterials for electrocatalysis. Adv. Energy Mater. 2016, 6, 1600423.

  186. [186]

    Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302–6309.

  187. [187]

    Wu, J. X.; Hou, S. Z.; Zhang, X. D.; Xu, M.; Yang, H. F.; Cao, P. S.; Gu, Z. Y. Cathodized copper porphyrin metal-organic framework nanosheets for selective formate and acetate production from CO2 electroreduction. Chem. Sci. 2019, 10, 2199–2205.

  188. [188]

    Senthil Kumar, R.; Senthil Kumar, S.; Anbu Kulandainathan, M. Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem. Commun. 2012, 25, 70–73.

  189. [189]

    Tu, W. G.; Xu, Y.; Yin, S. M.; Xu, R. Rational design of catalytic centers in crystalline frameworks. Adv. Mater. 2018, 30, 1707582.

  190. [190]

    Ahrenholtz, S. R.; Epley, C. C.; Morris, A. J. Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. J. Am. Chem. Soc. 2014, 136, 2464–2472.

  191. [191]

    Hod, I.; Bury, W.; Gardner, D. M.; Deria, P.; Roznyatovskiy, V.; Wasielewski, M. R.; Farha, O. K.; Hupp, J. T. Bias-switchable permselectivity and redox catalytic activity of a ferrocene-functionalized, thin-film metal-organic framework compound. J. Phys. Chem. Lett. 2015, 6, 586–591.

  192. [192]

    Huang, N.; Wang, P.; Jiang, D. L. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068.

  193. [193]

    Feng, X.; Ding, X. S.; Jiang, D. L. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022.

  194. [194]

    Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C. H.; Zhao, Y. B.; Chang, C. J.; Yaghi, O. M. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 1116–1122.

  195. [195]

    Johnson, E. M.; Haiges, R.; Marinescu, S. C. Covalent-organic frameworks composed of rhenium bipyridine and metal porphyrins: Designing heterobimetallic frameworks with two distinct metal sites. ACS Appl. Mater. Interfaces 2018, 10, 37919–37927.

  196. [196]

    Zagal, J. H. Metallophthalocyanines as catalysts in electrochemical reactions. Coord. Chem. Rev. 1992, 119, 89–136.

  197. [197]

    Popov, D. A.; Luna, J. M.; Orchanian, N. M.; Haiges, R.; Downes, C. A.; Marinescu, S. C. A 2,2′-bipyridine-containing covalent organic framework bearing rhenium(I) tricarbonyl moieties for CO2 reduction. Dalton Trans. 2018, 47, 17450–17460.

  198. [198]

    Liu, H. Y.; Chu, J.; Yin, Z. L.; Cai, X.; Zhuang, L.; Deng, H. X. Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 2018, 4, 1696–1709.

  199. [199]

    Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D. L. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 2013, 135, 546–549.

  200. [200]

    Peng, P.; Zhou, Z. H.; Guo, J. N.; Xiang, Z. H. Well-defined 2D covalent organic polymers for energy electrocatalysis. ACS Energy Lett. 2017, 2, 1308–1314.

  201. [201]

    Li, H. W.; Guarr, T. F. Formation of electronically conductive thin films of metal phthalocyanines via electropolymerization. J. Chem. Soc. Chem. Commun. 1989, 832–834.

  202. [202]

    Bettelheim, A.; White, B. A.; Murray, R. W. Electrocatalysis of dioxygen reduction in aqueous acid and base by multimolecular layer films of electropolymerized cobalt tetra(o-aminophenyl)porphyrin. J. Electroanal. Chem. 1987, 217, 271–286.

  203. [203]

    Magdesieva, T. V.; Zhukov, I. V.; Kravchuk, D. N.; Semenikhin, O. A.; Tomilova, L. G.; Butin, K. P. Electrocatalytic CO2 reduction in methanol catalyzed by mono-, di-, and electropolymerized phthalocyanine complexes. Russ. Chem. Bull. 2002, 51, 805–812.

  204. [204]

    Quezada, D.; Honores, J.; Aguirre M. J.; Isaacs, M. Electrocatalytic reduction of carbon dioxide on conducting glass electrode modified with polymeric porphyrin films containing transition metals in ionic liquid medium. J. Coord. Chem. 2014, 67, 4090–4100.

  205. [205]

    Isaacs, M.; Armijo, F.; Ramírez, G.; Trollund, E.; Biaggio, S. R.; Costamagna, J.; Aguirre, M. J. Electrochemical reduction of CO2 mediated by poly-M-aminophthalocyanines (M = Co, Ni, Fe): Poly-Cotetraaminophthalocyanine, a selective catalyst. J. Mol. Catal. A Chem. 2005, 229, 249–257.

  206. [206]

    Boeva, Z. A.; Sergeyev, V. G. Polyaniline: Synthesis, properties, and application. Polym. Sci. Ser. C 2014, 56, 144–153.

  207. [207]

    Wu, H. H.; Zeng, M.; Zhu, X.; Tian, C. C.; Mei, B. B.; Song, Y.; Du, X. L.; Jiang, Z.; He, L.; Xia, C. G. et al. Defect engineering in polymeric cobalt phthalocyanine networks for enhanced electrochemical CO2 reduction. ChemElectroChem 2018, 5, 2717–2721.

  208. [208]

    Smith, P. T.; Benke, B. P.; Cao, Z.; Kim, Y.; Nichols, E. M.; Kim, K.; Chang, C. J. Iron porphyrins embedded into a supramolecular porous organic cage for electrochemical CO2 reduction in water. Angew. Chem., Int. Ed. 2018, 57, 9684–9688.

  209. [209]

    Choi, J.; Kim, J.; Wagner, P.; Gambhir, S.; Jalili, R.; Byun, S.; Sayyar, S.; Lee, Y. M.; MacFarlane, D. R.; Wallace, G. G. et al. Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environ. Sci. 2019, 12, 747–755.

  210. [210]

    Portenkirchner, E.; Gasiorowski, J.; Oppelt, K.; Schlager, S.; Schwarzinger, C.; Neugebauer, H.; Knör, G.; Sariciftci, N. S. Electrocatalytic reduction of carbon dioxide to carbon monoxide by a polymerized film of an alkynyl-substituted rhenium(I) complex. ChemCatChem 2013, 5, 1790–1796.

  211. [211]

    Collomb-Dunand-Sauthier, M. N.; Deronzier, A.; Ziessel, R. Electrocatalytic reduction of carbon dioxide with mono(bipyridine)carbonylruthenium complexes in solution or as polymeric thin films. Inorg. Chem. 1994, 33, 2961–2967.

  212. [212]

    O’Toole, T. R.; Margerum, L. D.; Westmoreland, T. D.; Vining, W. J.; Murray, R. W.; Meyer, T. J. Electrocatalytic reduction of CO2 at a chemically modified electrode. J. Chem. Soc. Chem. Commun. 1985, 1416–1417.

  213. [213]

    Cabrera, C. R.; Abruña, H. D. Electrocatalysis of CO2 reduction at surface modified metallic and semiconducting electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1986, 209, 101–107.

  214. [214]

    Mackintosh, H. J.; Budd, P. M.; McKeown, N. B. Catalysis by microporous phthalocyanine and porphyrin network polymers. J. Mater. Chem. 2008, 78, 573–578.

  215. [215]

    McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 737, 4347–4357.

  216. [216]

    Artero, V.; Saveant, J. M. Toward the rational benchmarking of homogeneous H2-evolving catalysts. Energy Environ. Sci. 2014, 7, 3808–3814.

  217. [217]

    Costentin, C.; Drouet, S.; Robert, M.; Savéant, J. M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. J. Am. Chem. Soc. 2012, 134, 11235–11242.

  218. [218]

    Gupta, N.; Gattrell, M.; MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 2006, 36, 161–172.

  219. [219]

    Weng, L. C.; Bell, A. T.; Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 2018, 20, 16973–16984.

  220. [220]

    Burdyny, T.; Graham, P. J.; Pang, Y. J.; Dinh, C. T.; Liu, M.; Sargent, E. H.; Sinton, D. Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustainable Chem. Eng. 2017, 5, 4031–4040.

  221. [221]

    Pidko, E. A. Toward the balance between the reductionist and systems approaches in computational catalysis: Model versus method accuracy for the description of catalytic systems. ACS Catal. 2017, 7, 4230–4234.

  222. [222]

    Singh, M. R.; Goodpaster, J. D.; Weber, A. Z.; Head-Gordon, M.; Bell, A. T. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proc. Natl. Acad. Sci. USA 2017, 114, E8812–E8821.

  223. [223]

    Shi, C.; Chan, K.; Yoo, J. S.; Norskov, J. K. Barriers of electrochemical CO2 reduction on transition metals. Org. Process Res. Dev. 2016, 20, 1424–1430.

  224. [224]

    Kastlunger, G.; Lindgren, P.; Peterson, A. A. Controlled-potential simulation of elementary electrochemical reactions: Proton discharge on metal surfaces. J. Phys. Chem. C 2018, 122, 12771–12781.

  225. [225]

    Lu, X.; Wu, Y. S.; Yuan, X. L.; Huang, L.; Wu, Z. S.; Xuan, J.; Wang, Y. F.; Wang, H. L. High-performance electrochemical CO2 reduction cells based on non-noble metal catalysts. ACS Energy Lett. 2018, 3, 2527–2532.

  226. [226]

    Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 2018, 7, 32–39.

  227. [227]

    Verma, S.; Lu, X.; Ma, S. C.; Masel, R. I.; Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 2016, 18, 7075–7084.

  228. [228]

    Dinh, C. T.; Garcia de Arquer, F. P.; Sinton, D.; Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 2018, 3, 2835–2840.

  229. [229]

    Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

  230. [230]

    House, K. Z.; Baclig, A. C.; Ranjan, M.; van Nierop, E. A.; Wilcox, J.; Herzog, H. J. Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl. Acad. Sci. USA 2011, 108, 20428–20433.

  231. [231]

    Keith, D. W.; Holmes, G.; St. Angelo, D.; Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2018, 2, 1573–1594.

  232. [232]

    Wakerley, D. W.; Reisner, E. Oxygen-tolerant proton reduction catalysis: Much O2 about nothing? Energy Environ. Sci. 2015, 8, 2283–2295.

  233. [233]

    Williams, K.; Corbin, N.; Zeng, J.; Lazouski, N.; Yang, D. T.; Manthiram, K. Protecting effect of mass transport during electrochemical reduction of oxygenated carbon dioxide feedstocks. Sustainable Energy Fuels, in press, DOI: https://doi.org/10.1039/C9SE00024K.

  234. [234]

    Kumagai, H.; Nishikawa, T.; Koizumi, H.; Yatsu, T.; Sahara, G.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Electrocatalytic reduction of low concentration CO2. Chem. Sci. 2019, 10, 1597–1606.

Download references

Acknowledgements

We gratefully acknowledge financial support from Cenovus Energy. N. C. was supported by a NSF Graduate Research Fellowship.

Author information

Correspondence to Karthish Manthiram.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Corbin, N., Zeng, J., Williams, K. et al. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 12, 2093–2125 (2019). https://doi.org/10.1007/s12274-019-2403-y

Download citation

Keywords

  • CO2 reduction
  • electrocatalysis
  • porphyrins
  • phthalocyanines
  • molecular complexes
  • heterogeneous catalysis