Can insulating graphene oxide contribute the enhanced conductivity and durability of silver nanowire coating?

  • Feng Duan
  • Weiwei Li
  • Guorui Wang
  • Chuanxin Weng
  • Hao Jin
  • Hui ZhangEmail author
  • Zhong ZhangEmail author
Research Article


As an essential component of flexible optoelectronic devices, transparent conductive films made of silver nanowire (AgNW) have attracted wide attention due to the extraordinary optical, electrical and mechanical properties. However, the application of AgNW coating still faces some challenges to be overcome including large contact resistance and poor durability. Here, we induce insulating graphene oxide over silver nanowire network through solution process to modify the electrical property and provide a protective layer. Strong interaction with substrates reducing the contact resistance of AgNW junctions and extra conductive channels of graphene oxide sheets contributes to the dramatic enhancement in electric property as well as durability. The resulting coating exhibits superior and uniform optoelectronic performances (sheet resistance of ~ 38 Ω·sq−1 with 91% transmittance at 550 nm), outstanding stability in harsh environments, strong adhesion, and excellent mechanical flexibility after 3,000 bending cycles at a bending radius of 2.0 mm, which imply the promising application prospects in flexible optoelectronics.


silver nanowires durability graphene oxide transparent electrodes flexible electronics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work is financially supported by the National Natural Science Foundation of China (Nos. 11890682, 11832010 and 51861165103).

Supplementary material

12274_2019_2394_MOESM1_ESM.pdf (3.2 mb)
Can insulating graphene oxide contribute the enhanced conductivity and durability of silver nanowire coating?


  1. [1]
    Chu, H. C.; Chang, Y. C.; Lin, Y.; Chang, S. H.; Chang, W. C.; Li, G. A.; Tuan, H. Y. Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications. ACS Appl. Mater. Interfaces 2016, 8, 13009–13017.CrossRefGoogle Scholar
  2. [2]
    Lee, J. W.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. S.; Lee, D.; Ko, S. H. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 2013, 23, 4171–4176.CrossRefGoogle Scholar
  3. [3]
    Liu, Z. K.; Li, J. H.; Yan, F. Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 2013, 25, 4296–4301.CrossRefGoogle Scholar
  4. [4]
    Ok, K. H.; Kim, J.; Park, S. R.; Kim, Y.; Lee, C. J.; Hong, S. J.; Kwak, M. G.; Kim, N.; Han, C. J.; Kim, J. W. Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. Sci. Rep. 2015, 5, 9464CrossRefGoogle Scholar
  5. [5]
    Tahar, R. B. H.; Ban, T.; Ohya, Y.; Takahashi, Y. Tin doped indium oxide thin films: Electrical properties. J. Appl. Phys. 1998, 83, 2631–2645.CrossRefGoogle Scholar
  6. [6]
    Ederth, J.; Johnsson, P.; Niklasson, G. A.; Hoel, A.; Hultåker, A.; Heszler, P.; Granqvist, C. G.; van Doorn, A. R.; Jongerius, M. J.; Burgard, D. Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles. Phys. Rev. B 2003, 68, 155410.CrossRefGoogle Scholar
  7. [7]
    Kumar, A.; Zhou, C. W. The race to replace tin-doped indium oxide: Which material will win? ACS Nano 2010, 4, 11–14.CrossRefGoogle Scholar
  8. [8]
    Vosgueritchian, M.; Lipomi, D. J.; Bao, Z. N. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 2012, 22, 421–428.CrossRefGoogle Scholar
  9. [9]
    Kim, S.; Sanyoto, B.; Park, W. T.; Kim, S.; Mandal, S.; Lim, J. C.; Noh, Y. Y.; Kim, J. H. Purification of PEDOT:PSS by ultrafiltration for highly conductive transparent electrode of all-printed organic devices. Adv. Mater. 2016, 28, 10149–10154.CrossRefGoogle Scholar
  10. [10]
    Sun, K.; Li, P. C.; Xia, Y. J.; Chang, J. J.; Ouyang, J. Y. Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode. ACS Appl. Mater. Interfaces 2015, 7, 15314–15320.CrossRefGoogle Scholar
  11. [11]
    Jeon, I.; Chiba, T.; Delacou, C.; Guo, Y. L.; Kaskela, A.; Reynaud, O.; Kauppinen, E. I.; Maruyama, S.; Matsuo, Y. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: Investigation of electron-blocking layers and dopants. Nano Lett. 2015, 15, 6665–6671.CrossRefGoogle Scholar
  12. [12]
    Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110.CrossRefGoogle Scholar
  13. [13]
    Liu, Z. K.; You, P.; Xie, C.; Tang, G. Q.; Yan, F. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 2016, 28, 151–157.CrossRefGoogle Scholar
  14. [14]
    Sung, H.; Ahn, N.; Jang, M. S.; Lee, J. K.; Yoon, H.; Park, N. G.; Choi, M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 2016, 6, 1501873.CrossRefGoogle Scholar
  15. [15]
    Petridis, C.; Konios, D.; Stylianakis, M. M.; Kakavelakis, G.; Sygletou, M.; Savva, K.; Tzourmpakis, P.; Krassas, M.; Vaenas, N.; Stratakis, E. et al. Solution processed reduced graphene oxide electrodes for organic photovoltaics. Nanoscale Horiz. 2016, 1, 375–382.CrossRefGoogle Scholar
  16. [16]
    Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.CrossRefGoogle Scholar
  17. [17]
    Fang, Y. S.; Wu, Z. C.; Li, J.; Jiang, F. Y.; Zhang, K.; Zhang, Y. L.; Zhou, Y. H.; Zhou, J.; Hu, B. High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater. 2018, 28, 1705409.CrossRefGoogle Scholar
  18. [18]
    Teymouri, A.; Pillai, S.; Ouyang, Z.; Hao, X. J.; Liu, F. Y.; Yan, C.; Green, M. A. Low-temperature solution processed random silver nanowire as a promising replacement for indium tin oxide. ACS Appl. Mater. Interfaces 2017, 9, 34093–34100.CrossRefGoogle Scholar
  19. [19]
    Nian, Q.; Saei, M.; Xu, Y.; Sabyasachi, G.; Deng, B. W; Chen, Y. P.; Cheng, G. J. Crystalline nanojoining silver nanowire percolated networks on flexible substrate. ACS Nano 2015, 9, 10018–10031.CrossRefGoogle Scholar
  20. [20]
    Park, J. H.; Hwang, G. T.; Kim, S.; Seo, J.; Park, H. J.; Yu, K.; Kim, T. S.; Lee, K. J. Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 2017, 29, 1603473.CrossRefGoogle Scholar
  21. [21]
    Park, J. W.; Shin, D. K.; Ahn, J.; Lee, J. Y. Thermal property of transparent silver nanowire films. Semicond. Sci. Technol. 2014, 29, 015002.CrossRefGoogle Scholar
  22. [22]
    Chen, T. L.; Ghosh, D. S.; Mkhitaryan, V.; Pruneri, V. Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh. ACS Appl. Mater. Interfaces 2013, 5, 11756–11761.CrossRefGoogle Scholar
  23. [23]
    Seo, J. H.; Hwang, I.; Um, H. D.; Lee, S.; Lee, K.; Park, J.; Shin, H.; Kwon, T. H.; Kang, S. J.; Seo, K. Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes. Adv. Mater. 2017, 29, 1701479.CrossRefGoogle Scholar
  24. [24]
    Kim, A.; Won, Y.; Woo, K.; Jeong, S.; Moon, J. All-solution-processed indium-free transparent composite electrodes based on Ag nanowire and metal oxide for thin-film solar cells. Adv. Funct. Mater. 2014, 24, 2462–2471.CrossRefGoogle Scholar
  25. [25]
    Chen, D.; Liang, J.J.; Liu, C.; Saldanha, G.; Zhao, F. C.; Tong, K.; Liu, J.; Pei, Q. B. Thermally stable silver nanowire-polyimide transparent electrode based on atomic layer deposition of zinc oxide on silver nanowires. Adv. Funct. Mater. 2015, 25, 7512–7520.CrossRefGoogle Scholar
  26. [26]
    Khan, A.; Nguyen, V. H.; Muñoz-Rojas, D.; Aghazadehchors, S.; Jiménez, C.; Nguyen, N. D.; Bellet, D. Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl. Mater. Interfaces 2018, 10, 19208–19217.CrossRefGoogle Scholar
  27. [27]
    Kim, Y.; Ryu, T. I.; Ok, K. H.; Kwak, M. G.; Park, S.; Park, N. G.; Han, C. J.; Kim, B. S.; Ko, M. J.; Son, H. J. et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 2015, 25, 4580–4589.CrossRefGoogle Scholar
  28. [28]
    Jin, Y. X.; Li, L.; Cheng, Y. R.; Kong, L. Q.; Pei, Q. B.; Xiao, F. Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer sol-gel transition. Adv. Funct. Mater. 2015, 25, 1581–1587.CrossRefGoogle Scholar
  29. [29]
    Xiong, W. W.; Liu, H. L.; Chen, Y. Z.; Zheng, M. L.; Zhao, Y. Y.; Kong, X. B.; Wang, Y.; Zhang, X. Q.; Kong, X. Y.; Wang, P. F. et al. Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes. Adv. Mater. 2016, 28, 7167–7172.CrossRefGoogle Scholar
  30. [30]
    Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27.CrossRefGoogle Scholar
  31. [31]
    Chen, R. Y.; Das, S. R.; Jeong, C.; Khan, M. R.; Janes, D. B.; Alam, M. A. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv. Funct. Mater. 2013, 23, 5150–5158.CrossRefGoogle Scholar
  32. [32]
    Choi, H. O.; Kim, D. W.; Kim, S. J.; Cho, K. M.; Jung, H. T. Combining the silver nanowire bridging effect with chemical doping for highly improved conductivity of CVD-grown graphene films. J. Mater. Chem. C 2014, 2, 5902–5909.CrossRefGoogle Scholar
  33. [33]
    Hwang, B.; Park, M.; Kim, T.; Han, S. M. Effect of RGO deposition on chemical and mechanical reliability of Ag nanowire flexible transparent electrode. RSC Adv. 2016, 6, 67389–67395.CrossRefGoogle Scholar
  34. [34]
    Zhang, X. Q.; Wu, J.; Liu, H.; Wang, J. T.; Zhao, X. F.; Xie, Z. Y. Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide-assisted silver nanowire transparent electrode. Org. Electron. 2017, 50, 255–263.CrossRefGoogle Scholar
  35. [35]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  36. [36]
    Pei, S. F.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228.CrossRefGoogle Scholar
  37. [37]
    Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557–6564.CrossRefGoogle Scholar
  38. [38]
    Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Correction: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 5226.CrossRefGoogle Scholar
  39. [39]
    Moon, I. K.; Kim, J. I.; Lee, H.; Hur, K.; Kim, W. C.; Lee, H. 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci. Rep. 2013, 3, 1112.CrossRefGoogle Scholar
  40. [40]
    Liang, J. J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X. F.; Chen, Y. S.; Pei, Q. B. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014, 8, 1590–1600.CrossRefGoogle Scholar
  41. [41]
    Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.CrossRefGoogle Scholar
  42. [42]
    Sun, Y. G. Silver nanowires—Unique templates for functional nanostructures. Nanoscale 2010, 2, 1626–1642.CrossRefGoogle Scholar
  43. [43]
    Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 2003, 3, 955–960.CrossRefGoogle Scholar
  44. [44]
    Gao, Y.; Liu, L. Q.; Zu, S. Z.; Peng, K.; Zhou, D.; Han, B. H.; Zhang, Z. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers. ACS Nano 2011, 5, 2134–2141.CrossRefGoogle Scholar
  45. [45]
    Krantz, J.; Stubhan, T.; Richter, M.; Spallek, S.; Litzov, I.; Matt, G. J.; Spiecker, E.; Brabec, C. J. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices. Adv. Funct. Mater. 2013, 23, 1711–1717.CrossRefGoogle Scholar
  46. [46]
    Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577–2583.CrossRefGoogle Scholar
  47. [47]
    Eda, G.; Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 2010, 22, 2392–2415.CrossRefGoogle Scholar
  48. [48]
    Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 809–817.CrossRefGoogle Scholar
  49. [49]
    Lee, H.; Kim, M.; Kim, I.; Lee, H. Flexible and stretchable optoelectronic devices using silver nanowires and graphene. Adv. Mater. 2016, 28, 4541–4548.CrossRefGoogle Scholar
  50. [50]
    Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng.: R: Rep. 2002, 37, 129–281.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations