Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting

  • Lulu Han
  • Limin GuoEmail author
  • Chaoqun Dong
  • Chi Zhang
  • Hui Gao
  • Jiazheng Niu
  • Zhangquan PengEmail author
  • Zhonghua ZhangEmail author
Research Article


Among various efficient electrocatalysts for water splitting, CoFe and NiFe-based oxides/hydroxides are typically promising candidates thanks to their extraordinary activities towards oxygen evolution reaction (OER). However, the endeavor to advance their performance towards overall water splitting has been largely impeded by the limited activities for hydrogen evolution reaction (HER). Herein, we present a CoFeNi ternary metal-based oxide (CoFeNi-O) with impressive hierarchical bimodal channel nanostructures, which was synthesized via a facile one-step dealloying strategy. The oxide shows superior catalytic activities towards both HER and OER in alkaline solution due to the alloying effect and the intrinsic hierarchical porous structure. CoFeNi-O loaded on glass carbon electrodes only requires the overpotentials as low as 230 and 278 mV to achieve the OER current densities of 10 and 100 mA·cm−2, respectively. In particular, extremely low overpotentials of 200 and 57.9 mV are sufficient enough for Ni foam-supported CoFeNi-O to drive the current density of 10 mA·cm−2 towards OER and HER respectively, which is comparable with or even better than the already-developed state-of-the-art non-noble metal oxide based catalysts. Benefiting from the bifunctionalities of CoFeNi-O, an alkaline electrolyzer constructed by the Ni foam-supported CoFeNi-O electrodes as both the anode and the cathode can deliver a current density of 10 mA·cm−2 at a fairly low cell-voltage of 1.558 V. In view of its electrocatalytic merits together with the facile and cost-effective dealloying route, CoFeNi-O is envisioned as a promising catalyst for future production of sustainable energy resources.


electrocatalysts hydrogen evolution reaction oxygen evolution reaction water splitting dealloying 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 51871133 and 51671115), Department of Education of Jilin Province (No. JJKH20190767KJ), and Department of Science and Technology of Shandong Province for Young Tip-top Talent Support Project.

Supplementary material

12274_2019_2389_MOESM1_ESM.pdf (2.6 mb)
Supplementary material, approximately 228 KB.


  1. [1]
    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.CrossRefGoogle Scholar
  2. [2]
    Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860.CrossRefGoogle Scholar
  3. [3]
    Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.CrossRefGoogle Scholar
  4. [4]
    Gardner, G.; Al-Sharab, J.; Danilovic, N.; Go, Y. B.; Ayers, K.; Greenblatt, M.; Dismukes, G. C. Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides. Energy Environ. Sci. 2016, 9, 184–192.CrossRefGoogle Scholar
  5. [5]
    Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.CrossRefGoogle Scholar
  6. [6]
    Frydendal, R.; Paoli, E. A.; Knudsen, B. P.; Wickman, B.; Malacrida, P.; Stephens, I. E. L.; Chorkendorff I. Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses. ChemElectroChem 2014, 1, 2075–2081.CrossRefGoogle Scholar
  7. [7]
    McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.CrossRefGoogle Scholar
  8. [8]
    Antolini, E. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 2014, 4, 1426–1440.CrossRefGoogle Scholar
  9. [9]
    De Chialvo, M. R. G.; Chialvo, A. C. Oxygen evolution reaction on NixCo(3−x)O4 electrodes with spinel structure. Electrochim. Acta 1993, 38, 2247–2252.CrossRefGoogle Scholar
  10. [10]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.CrossRefGoogle Scholar
  11. [11]
    Lee, M.; Oh, H.; Cho, M. K.; Ahn, J. P.; Hwang, Y. J.; Min, B. K. Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Appl. Catal. B: Environ. 2018, 233, 130–135.CrossRefGoogle Scholar
  12. [12]
    Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.CrossRefGoogle Scholar
  13. [13]
    Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.CrossRefGoogle Scholar
  14. [14]
    Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.CrossRefGoogle Scholar
  15. [15]
    Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.CrossRefGoogle Scholar
  16. [16]
    Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.CrossRefGoogle Scholar
  17. [17]
    Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.CrossRefGoogle Scholar
  18. [18]
    He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. 2017, 129, 3955–3958.CrossRefGoogle Scholar
  19. [19]
    Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetalorganic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.CrossRefGoogle Scholar
  20. [20]
    Kumar, M.; Awasthi, R.; Sinha, A. S. K.; Singh, R. N. New ternary Fe, Co, and Mo mixed oxide electrocatalysts for oxygen evolution. Int. J. Hydrog. Energy 2011, 36, 8831–8838.CrossRefGoogle Scholar
  21. [21]
    Su, C.; Wang, W.; Chen, Y. B.; Yang, G. M.; Xu, X. M.; Tadé, M. O.; Shao, Z. P. SrCo0.9Ti0.1O3−δ as a new electrocatalyst for the oxygen evolution reaction in alkaline electrolyte with stable performance. ACS Appl. Mater. Interfaces 2015, 7, 17663–17670.CrossRefGoogle Scholar
  22. [22]
    Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.CrossRefGoogle Scholar
  23. [23]
    Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.CrossRefGoogle Scholar
  24. [24]
    Abellán, G.; Carrasco, J. A.; Coronado, E.; Romero, J.; Varela, M. Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: Structural, magnetic and electrochemical properties. J. Mater. Chem. C 2014, 2, 3723–3731.CrossRefGoogle Scholar
  25. [25]
    Zhuang, L. Z.; Jia, Y.; He, T. W.; Du, A. J.; Yan, X. C.; Ge, L.; Zhu, Z. H.; Yao, X. D. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509–3518.CrossRefGoogle Scholar
  26. [26]
    Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. 2015, 127, 6349–6352.CrossRefGoogle Scholar
  27. [27]
    Bajdich, M.; García-Mota, M.; Vojvodic, A.; Norskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521–13530.CrossRefGoogle Scholar
  28. [28]
    McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.CrossRefGoogle Scholar
  29. [29]
    Liao, P. L.; Keith, J. A.; Carter, E. A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 2012, 134, 13296–13309.CrossRefGoogle Scholar
  30. [30]
    Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.CrossRefGoogle Scholar
  31. [31]
    Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.CrossRefGoogle Scholar
  32. [32]
    Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.CrossRefGoogle Scholar
  33. [33]
    Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P.; Kuang, Y. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.CrossRefGoogle Scholar
  34. [34]
    Li, X. M.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2016, 4, 11973–12000.CrossRefGoogle Scholar
  35. [35]
    Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.CrossRefGoogle Scholar
  36. [36]
    Lu, X. Y.; Yim, W. L.; Suryanto, B. H. R.; Zhao, C. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 2901–2907.CrossRefGoogle Scholar
  37. [37]
    Dixon, M. C.; Daniel, T. A.; Hieda, M.; Smilgies, D. M.; Chan, M. H. W.; Allara, D. L. Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 2007, 23, 2414–2422.CrossRefGoogle Scholar
  38. [38]
    Thimmaiah, S.; Rajamathi, M.; Singh, N.; Bera, P.; Meldrum, F.; Chandrasekhar, N.; Seshadri, R. A solvothermal route to capped nanoparticles of γ-Fe2O3 and CoFe2O4. J. Mater. Chem. 2001, 11, 3215–3221.CrossRefGoogle Scholar
  39. [39]
    Gu, Z. J.; Xiang, X.; Fan, G. L.; Li, F. Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction-oxidation route. J. Phys. Chem. C 2008, 112, 18459–18466.CrossRefGoogle Scholar
  40. [40]
    Zeng, L. L.; Zhou, K.; Yang, L. J.; Du, G. J.; Liu, L. H.; Zhou, W. J. General approach of in situ etching and doping to synthesize a nickel-doped MxOy (M = Co, Mn, Fe) nanosheets array on nickel foam as large-sized electrodes for overall water splitting. ACS Appl. Energy Mater. 2018, 1, 6279–6287.CrossRefGoogle Scholar
  41. [41]
    Yang, B.; Yu, L.; Yan, H. J.; Sun, Y. B.; Liu, Q.; Liu, J. Y.; Song, D. L.; Hu, S. X.; Yuan, Y.; Liu, L. H. et al. Fabrication of urchin-like NiCo2(CO3)1.5(OH)3@NiCo2S4 on Ni foam by an ion-exchange route and application to asymmetrical supercapacitors. J. Mater. Chem. A 2015, 3, 13308–13316.CrossRefGoogle Scholar
  42. [42]
    McIntyre, N. S.; Cook, M. G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 1975, 47, 2208–2213.CrossRefGoogle Scholar
  43. [43]
    Geng, J.; Kuai, L.; Kan, E. J.; Wang, Q.; Geng, B. Y. Precious-metal-free Co-Fe-O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route. ChemSusChem 2015, 8, 659–664.CrossRefGoogle Scholar
  44. [44]
    Kim, H.; Seo, D. H.; Kim, H.; Park, I.; Hong, J.; Park, K. Y.; Kang, K. Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M = Fe, Mn, Co) anodes in lithium rechargeable batteries. Chem. Maters. 2012, 24, 720–725.CrossRefGoogle Scholar
  45. [45]
    Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electro-catalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.CrossRefGoogle Scholar
  46. [46]
    Sutthiumporn, K.; Kawi, S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression. Int. J. Hydrog. Energy 2011, 36, 14435–14446.CrossRefGoogle Scholar
  47. [47]
    Lu, X. H.; Zeng, Y. X.; Yu, M. H.; Zhai, T.; Liang, C. L.; Xie, S. L.; Balogun, M. S.; Tong, Y. X. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 2014, 26, 3148–3155.CrossRefGoogle Scholar
  48. [48]
    Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.CrossRefGoogle Scholar
  49. [49]
    Wang, A. L.; Xu, H.; Li, G. R. NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting. ACS Energy Lett. 2016, 1, 445–453.CrossRefGoogle Scholar
  50. [50]
    Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.CrossRefGoogle Scholar
  51. [51]
    Cheng, G. H.; Kou, T. Y.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H. O2 2−/O functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38, 155–166.CrossRefGoogle Scholar
  52. [52]
    Villarroel-Rocha, J.; Barrera, D.; Sapag, K. Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Micropor Mesopor Mater. 2014, 200, 68–78.CrossRefGoogle Scholar
  53. [53]
    Liu, R. C.; Liang, F. L.; Zhou, W.; Yang, Y. S.; Zhu, Z. H. Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. Nano Energy 2015, 12, 115–122.CrossRefGoogle Scholar
  54. [54]
    Zhao, L. L; Cao, Q.; Wang, A. L.; Duan, J. Z.; Zhou, W. J.; Sang, Y. H.; Liu, H. Iron oxide embedded Titania nanowires—An active and stable electrocatalyst for oxygen evolution in acidic media. Nano Energy 2018, 45, 118–126.CrossRefGoogle Scholar
  55. [55]
    Zeng, L.; Yang, L. J.; Lu, J.; Jia, J.; Yu, J. Y.; Deng, Y. Q.; Shao, M. F.; Zhou, W. J. One-step synthesis of Fe-Ni hydroxide nanosheets derived from bimetallic foam for efficient electrocatalytic oxygen evolution and overall water splitting. Chin. Chem. Lett. 2018, 29, 1875–1878.CrossRefGoogle Scholar
  56. [56]
    Yu, M. Q.; Li, Y. H.; Yang, S.; Liu, P. F.; Pan, L. F.; Zhang, L.; Yang, H. G. Mn3O4 nano-octahedrons on Ni foam as an efficient three-dimensional oxygen evolution electrocatalyst. J. Mater. Chem. A 2015, 3, 14101–14104.CrossRefGoogle Scholar
  57. [57]
    Han, L. L.; Dong, C. Q.; Zhang, C.; Gao, Y. L.; Zhang, J.; Gao, H.; Wang, Y.; Zhang, Z. H. Dealloying-directed synthesis of efficient mesoporous CoFe-based catalysts towards the oxygen evolution reaction and overall water splitting. Nanoscale 2017, 9, 16467–16475.CrossRefGoogle Scholar
  58. [58]
    Ponce, J.; RÍos, E.; Rehspringer, J. L.; Poillerat, G.; Chartier, P.; Gautier, J. L. Preparation of nickel aluminum-manganese spinel oxides NixAl1−xMn2O4 for oxygen electrocatalysis in alkaline medium: Comparison of properties stemming from different preparation methods. J. Solid State Chem. 1999, 145, 23–32.CrossRefGoogle Scholar
  59. [59]
    Chen, J. Y. C.; Miller, J. T.; Gerken, J. B.; Stahl, S. S. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: Promotion of activity by a redox-inert metal ion. Energy Environ. Sci. 2014, 7, 1382–1386.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and EngineeringShandong UniversityJinanChina
  2. 2.Jilin Engineering Normal UniversityChangchunChina
  3. 3.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  4. 4.School of Applied Physics and MaterialsWuyi UniversityJiangmenChina

Personalised recommendations