Advertisement

Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery

  • Zhuoliang Jiang
  • Hui SunEmail author
  • Wenke Shi
  • Tianhang Zhou
  • Jianyong Hu
  • Jingyang Cheng
  • Pengfei Hu
  • Shigang Sun
Research Article

Abstract

Rechargeable non-aqueous Li-O2 battery is regarded as one of the most promising energy-storage technologies on account of its high energy density. It is believed that the rational design of three-dimensional (3D) architecture for catalyst is a key factor for the remarkable performance. Metal-organic frameworks (MOFs) derived materials possess excellent architecture, which is beneficial for Li-O2 batteries. In this work, ZIF-67 is used as precursor template and calcinated under different temperature to produce Co3O4 crystals. When the anneal treatment is under 350 °C, the derived Co3O4 nanocage holds the most complete skeleton, which provides better charge transfer ability as well as O2 and Li+ diffusion. Meanwhile, the Co3O4 nanocage owns more oxygen vacancies, offering more active sites. With the synergistic effect of nanocage structure and active sites, the Co3O4 nanocage stably delivers a large specific capacity of 15,500 mAh·g-1 as well as a long cycle-life of 132 cycles at limited discharge capacity of 1,000 mAh·g-1 under discharge/charge current density of 0.5 A·g-1.

Keywords

Li-O2 batteries metal-organic framework (MOF)-derived Co3O4 nanocage Co3O4 polyhedron Co3O4 particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work supported financially by the National Key R&D Program of China (No. 2016YFB0100200); Science Foundation of China University of Petroleum, Beijing (C201604, No. 2462014YJRC003) and State key laboratory of physical chemistry of solid surfaces, Xiamen University (No. 201703

Supplementary material

12274_2019_2388_MOESM1_ESM.pdf (2.6 mb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Huang, H. B.; Luo, S. H.; Liu, C. L.; Yi, T. F.; Zhai, Y. C. High-surface-area and porous Co2P nanosheets as cost-effective cathode catalysts for Li-O2 batteries. ACS. Appl. Mater. Interfaces 2018, 10, 21281–21290.CrossRefGoogle Scholar
  2. [2]
    Liu, T.; Frith, J. T.; Kim, G.; Kerber, R. N.; Dubouis, N.; Shao, Y. L.; Liu, Z. G.; Magusin, P. C. M. M.; Casford, M. T. L.; Garcia-Araez, N. et al. The effect of water on quinone redox mediators in nonaqueous Li-O2 batteries. J. Am. Chem. Soc. 2018, 140, 1428–1437.CrossRefGoogle Scholar
  3. [3]
    Yu, W.; Wang, H. W.; Hu, J.; Yang, W.; Qin, L.; Liu, R. L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Molecular sieve induced solution growth of Li2O2 in the Li-O2 battery with largely enhanced discharge capacity. ACS. Appl. Mater. Interfaces 2018, 10, 7989–7995.CrossRefGoogle Scholar
  4. [4]
    Xu, C. Y.; Dai, J. C.; Teng, X. G.; Zhu, Y. M. Preparation of a new carbon nanofiber as a high-capacity air electrode for nonaqueous lithium-oxygen batteries. ChemCatChem 2016, 8, 3725–3731.CrossRefGoogle Scholar
  5. [5]
    Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.CrossRefGoogle Scholar
  6. [6]
    Lyu, Z. Y.; Zhou, Y.; Dai, W. R.; Cui, X. H.; Lai, M.; Wang, L.; Huo, F. W.; Huang, W.; Hu, Z.; Chen, W. Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries. Chem. Soc. Rev. 2017, 46, 6046–6072.CrossRefGoogle Scholar
  7. [7]
    Xing, Y.; Yang, Y.; Chen, R. J.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Wu, F.; Guo, S. J. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small 2018, 14, 1704366.CrossRefGoogle Scholar
  8. [8]
    Lin, X. D.; Yuan, R. M.; Cai, S. R.; Jiang, Y. H.; Lei, J.; Liu, S. G.; Wu, Q. H.; Liao, H. G.; Zheng, M. S.; Dong, Q. F. An open-structured matrix as oxygen cathode with high catalytic activity and large Li2O2 accommodations for lithium-oxygen batteries. Adv. Energy Mater. 2018, 8, 1800089.CrossRefGoogle Scholar
  9. [9]
    Lee, Y. J.; Kim, D. H.; Kang, T. G.; Ko, Y.; Kang, K.; Lee, Y. J. Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li-O2 batteries. Chem. Mater. 2017, 29, 10542–10550.CrossRefGoogle Scholar
  10. [10]
    Balaish, M.; Ein-Eli, Y. The role of air-electrode structure on the incorporation of immiscible PFCs in nonaqueous Li-O2 battery. ACS. Appl. Mater. Interfaces 2017, 9, 9726–9737.CrossRefGoogle Scholar
  11. [11]
    Wang, L. K.; Tang, Z. H.; Yan, W.; Wang, Q. N.; Yang, H. Y.; Chen, S. W. Co@Pt core@shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. J. Power. Sources. 2017, 343, 458–466.CrossRefGoogle Scholar
  12. [12]
    Ren, X. Z.; Huang, M. J.; Luo, S.; Li, Y. L.; Deng, L. B.; Mi, H. W.; Sun, L. N.; Zhang, P. X. PdNi alloy decorated 3D hierarchically N, S co-doped macro-mesoporous carbon composites as efficient free-standing and binder-free catalysts for Li-O2 batteries. J. Mater. Chem. A 2018, 6, 10856–10867.CrossRefGoogle Scholar
  13. [13]
    Xiang, J.; Song, T.; Paik, U. Rational design of Au dotted Co3O4 nanosheets as an efficient bifunctional catalyst for Li-oxygen batteries. RSC Adv. 2017, 7, 51652–51657.CrossRefGoogle Scholar
  14. [14]
    Huang, H. B.; Luo, S. H.; Liu, C. L.; Wang, Q.; Wang, Z. Y.; Zhang, Y. H.; Hao, A. M.; Liu, Y. G.; Li, J. Z.; Zhai, Y. C. et al. Ag-decorated highly mesoporous Co3O4 nanosheets on nickel foam as an efficient free-standing cathode for Li-O2 batteries. J. Alloy. Compd. 2017, 726, 939–946.CrossRefGoogle Scholar
  15. [15]
    Kim, Y.; Park, J. H.; Kim, J. G.; Noh, Y.; Kim, Y.; Han, H.; Kim, W. B. Ruthenium oxide incorporated one-dimensional cobalt oxide composite nanowires as lithium-oxygen battery cathode catalysts. ChemCatChem 2017, 9, 3554–3562.CrossRefGoogle Scholar
  16. [16]
    Huang, L. L.; Mao, Y. J.; Wang, G. Q.; Xia, X. K.; Xie, J.; Zhang, S. C.; Du, G. H.; Cao, G. S.; Zhao, X. B. Ru-decorated knitted Co3O4 nanowires as a robust carbon/binder-free catalytic cathode for lithium-oxygen batteries. New. J. Chem. 2016, 40, 6812–6818.CrossRefGoogle Scholar
  17. [17]
    Liao, K. M.; Zhang, T.; Wang, Y. Q.; Li, F. J.; Jian, Z. L.; Yu, H. J.; Zhou, H. S. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. Chemsuschem 2015, 8, 1429–1434.CrossRefGoogle Scholar
  18. [18]
    Tang, C.; Sun, P.C.; Xie, J.; Tang, Z. C.; Yang, Z. X.; Dong, Z. X.; Cao, G. S.; Zhang, S. C.; Braun, P. V.; Zhao, X. B. Two-dimensional IrO2/MnO2 enabling conformal growth of amorphous Li2O2 for high-performance Li-O2 batteries. Energy Storage Mater. 2017, 9, 206–213.CrossRefGoogle Scholar
  19. [19]
    Luo, C. S.; Sun, H.; Jiang, Z. L.; Guo, H. L.; Gao, M. Y.; Wei, M. H.; Jiang, Z. M.; Zhou, H. J.; Sun, S. G. Electrocatalysts of Mn and Ru oxides loaded on MWCNTS with 3D structure and synergistic effect for rechargeable Li-O2 battery. Electrochim. Acta 2018, 282, 56–63.CrossRefGoogle Scholar
  20. [20]
    Wu, H. T.; Sun, W.; Shen, J. R.; Rooney, D. W.; Wang, Z. H.; Sun, K. N. Role of flower-like ultrathin Co3O4 nanosheets in water splitting and non-aqueous Li-O2 batteries. Nanoscale 2018, 10, 10221–10231.CrossRefGoogle Scholar
  21. [21]
    Zhou, Y.; Lyu, Z. Y.; Wang, L. J.; Dong, W. H.; Dai, W. R.; Cui, X. H.; Hao, Z. K.; Lai, M.; Chen, W. Co3O4 functionalized porous carbon nanotube oxygen-cathodes to promote Li2O2 surface growth for improved cycling stability of Li-O2 batteries. J. Mater. Chem. A 2017, 5, 25501–25508.CrossRefGoogle Scholar
  22. [22]
    Tong, S. F.; Zheng, M. B.; Lu, Y.; Lin, Z. X.; Li, J.; Zhang, X. P.; Shi, Y.; He, P.; Zhou, H. S. Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li-O2 batteries. J. Mater. Chem. A 2015, 3, 16177–16182.CrossRefGoogle Scholar
  23. [23]
    Liu, H. F.; Gao, X. Q.; Yao, X. L.; Chen, M. X.; Zhou, G. J.; Qi, J.; Zhao, X. L.; Wang, W. C.; Zhang, W.; Cao, R. Manganese(II) phosphate nanosheet assembly with native out-of-plane Mn centres for electrocatalytic water oxidation. Chem. Sci. 2019, 10, 191–197.CrossRefGoogle Scholar
  24. [24]
    Cai, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Liu, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem., Int. Ed. 2018, 57, 9392–9396.CrossRefGoogle Scholar
  25. [25]
    Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.CrossRefGoogle Scholar
  26. [26]
    Wan, S. H.; Qi, J.; Zhang, W.; Wang, W. N.; Zhang, S. K.; Liu, K. Q.; Zheng, H. Q.; Sun, J. L.; Wang, S. Y.; Cao, R. Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 2017, 29, 1700286.CrossRefGoogle Scholar
  27. [27]
    Jiang, Z. L.; Xie, J.; Luo, C. S.; Gao, M. Y.; Guo, H. L.; Wei, M. H.; Zhou, H. J.; Sun, H. 3D web freestanding RuO2-Co3O4 nanowires on Ni foam as highly efficient cathode catalysts for Li-O2 batteries. RSC Adv. 2018, 8, 23397–23403.CrossRefGoogle Scholar
  28. [28]
    Yu, Q. Y.; Yu, Q. L.; Sun, W.; Wu, H. T.; Wang, Z. H.; Rooney, D.; Sun, K. N. Novel Ni@Co3O4 web-like nanofiber arrays as highly effective cathodes for rechargeable Li-O2 batteries. Electrochim. Acta 2016, 220, 654–663.CrossRefGoogle Scholar
  29. [29]
    Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733.CrossRefGoogle Scholar
  30. [30]
    Zheng, F. C.; Yin, Z. C.; Xia, H. Y.; Zhang, Y. G. MOF-derived porous Co3O4 cuboids with excellent performance as anode materials for lithiumion batteries. Mater. Lett. 2017, 197, 188–191.CrossRefGoogle Scholar
  31. [31]
    Xiong, Y.; Xu, W. W.; Zhu, Z. Y.; Xue, Q. Z.; Lu, W. B.; Ding, D. G.; Zhu, L. ZIF-derived porous ZnO-Co3O4 hollow polyhedrons heterostructure with highly enhanced ethanol detection performance. Sens. Actuators B: Chem. 2017, 253, 523–532.CrossRefGoogle Scholar
  32. [32]
    Yan, W. J.; Guo, Z. Y.; Xu, H. S.; Lou, Y. B.; Chen, J. X.; Li, Q. W. Downsizing metal-organic frameworks with distinct morphologies as cathode materials for high-capacity Li-O2 batteries. Mater. Chem. Front. 2017, 1, 1324–1330.CrossRefGoogle Scholar
  33. [33]
    Yin, W.; Shen, Y.; Zou, F.; Hu, X. L.; Chi, B.; Huang, Y. H. Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS. Appl. Mater. Interfaces. 2015, 7, 4947–4954.CrossRefGoogle Scholar
  34. [34]
    Kim, S. H.; Lee, Y. J.; Kim, D. H.; Lee, Y. J. Bimetallic metal-organic frameworks as efficient cathode catalysts for Li-O2 batteries. ACS. Appl. Mater. Interfaces 2018, 10, 660–667.CrossRefGoogle Scholar
  35. [35]
    Tan, G. Q.; Chong, L. N.; Amine, R.; Lu, J.; Liu, C.; Yuan, Y. F.; Wen, J. G.; He, K.; Bi, X. X.; Guo, Y. Y. et al. Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping cobalt@graphene multiplecapsule heterostructures. Nano Lett. 2017, 17, 2959–2966.CrossRefGoogle Scholar
  36. [36]
    Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823.CrossRefGoogle Scholar
  37. [37]
    Su, D. W.; Dou, S. X.; Wang, G. X. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries. Sci. Rep. 2014, 4, 5767.CrossRefGoogle Scholar
  38. [38]
    Wu, R. B.; Qian, X. K.; Rui, X. H.; Liu, H.; Yadian, B. L.; Zhou, K.; Wei, J.; Yan, Q. Y.; Feng, X. Q.; Long, Y. et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932–1938.CrossRefGoogle Scholar
  39. [39]
    Jiang, M.; He, H.; Yi, W. J.; Huang, W.; Pan, X.; Wang, M. Y.; Chao, Z. S. ZIF-67 derived Ag-Co3O4@N-doped carbon/carbon nanotubes composite and its application in Mg-air fuel cell. Electrochem. Commun. 2017, 77, 5–9.CrossRefGoogle Scholar
  40. [40]
    Wang, J. K.; Gao, R.; Zhou, D.; Chen, Z. J.; Wu, Z. H.; Schumacher, G.; Hu, Z. B.; Liu, X. F. Boosting the electrocatalytic activity of Co3O4 nanosheets for a Li-O2 battery through modulating inner oxygen vacancy and exterior Co3+/Co2+ ratio. ACS Catal. 2017, 7, 6533–6541.CrossRefGoogle Scholar
  41. [41]
    Cao, J. Y.; Liu, S. Y.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Tips-bundled Pt/Co3O4 nanowires with directed peripheral growth of Li2O2 as efficient binder/carbon-free catalytic cathode for lithium-oxygen battery. ACS Catal. 2015, 5, 241–245.CrossRefGoogle Scholar
  42. [42]
    Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.CrossRefGoogle Scholar
  43. [43]
    Mu, X. W.; Wen, Q. H.; Ou, G.; Du, Y. M.; He, P.; Zhong, M. L.; Zhu, H.; Wu, H.; Yang, S. X.; Liu, Y. J. et al. A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries. Nano Energy 2018, 51, 83–90.CrossRefGoogle Scholar
  44. [44]
    Lee, S.; Lee, G. H.; Lee, H. J.; Dar, M. A.; Kim, D. W. Fe-based hybrid electrocatalysts for nonaqueous lithium-oxygen batteries. Sci. Rep. 2017, 7, 9495.CrossRefGoogle Scholar
  45. [45]
    Liu, X. H.; Si, W. P.; Zhang, J.; Sun, X. L.; Deng, J. W.; Baunack, S.; Oswald, S.; Liu, L. F.; Yan, C. L.; Schmidt, O. G. Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries. Sci. Rep. 2014, 4, 7452.CrossRefGoogle Scholar
  46. [46]
    Feng, M. Y.; Du, Q. H.; Su, L.; Zhang, G. W.; Wang, G. L.; Ma, Z. P.; Gao, W. M.; Qin, X. J.; Shao, G. J. Manganese oxide electrode with excellent electrochemical performance for sodium ion batteries by pre-intercalation of K and Na ions. Sci. Rep. 2017, 7, 2219.CrossRefGoogle Scholar
  47. [47]
    Wang, L.; Bi, X. F.; Yang, S. B. Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv. Mater. 2016, 28, 7672–7679.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhuoliang Jiang
    • 1
  • Hui Sun
    • 1
    Email author
  • Wenke Shi
    • 1
  • Tianhang Zhou
    • 3
  • Jianyong Hu
    • 1
  • Jingyang Cheng
    • 1
  • Pengfei Hu
    • 1
  • Shigang Sun
    • 2
  1. 1.State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of biogas upgrading utilization, College of New Energy and MaterialsChina University of Petroleum-BeijingBeijingChina
  2. 2.State Key Lab of PCOSSXiamen UniversityXiamenChina
  3. 3.Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität, DarmstadtDarmstadtGermany

Personalised recommendations