Advertisement

Pressure-dependent phase transition of 2D layered silicon telluride (Si2Te3) and manganese intercalated silicon telluride

  • Virginia L. Johnson
  • Auddy Anilao
  • Kristie J. KoskiEmail author
Research Article

Abstract

Two-dimensional (2D) layered silicon telluride (Si2Te3) nanocrystals were compressed to 12 GPa using diamond anvil cell techniques. Optical measurements show a color change from transparent red to opaque black indicating a semiconductor-to-metal phase transition. Raman scattering was used to observe the stiffening of the crystal lattice and subsequent phase behavior. A possible phase transition was observed at 9.5 ± 0.5 GPa evidenced by the disappearance of the A1g stretching mode. Si2Te3 was intercalated with elemental manganese to ∼ 1 at.%. Intercalation lowers the pressure of the proposed phase transition to 7.5 ± 1 GPa. Raman modes show both phonon stiffening and phonon softening, suggesting negative linear compressibility. These results provide fundamental insight into the high-pressure optical phonon behavior of silicon telluride and illuminate how a specific electron-donating intercalant can chemically alter pressure-dependent optical phonon behavior.

Keywords

silicon telluride Si2Te3 high pressure diamond anvil cell 2D layered material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Office of Naval Research (No. N00014-16-1-3161).

Supplementary material

12274_2019_2387_MOESM1_ESM.pdf (957 kb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Keuleyan, S.; Wang, M. J.; Chung, F. R.; Commons, J.; Koski, K. J. A silicon-based two-dimensional chalcogenide: Growth of Si2Te3 nanoribbons and nanoplates. Nano Lett. 2015, 15, 2285–2290.CrossRefGoogle Scholar
  2. [2]
    Wang, M. J.; Lahti, G.; Williams, D.; Koski, K. J. Chemically tunable full spectrum optical properties of 2D silicon telluride nanoplates. ACS Nano 2018, 12, 6163–6169.CrossRefGoogle Scholar
  3. [3]
    Wu, K. Y.; Sun, W. W.; Jiang, Y.; Chen, J. Y.; Li, L.; Cao, C. B.; Shi, S. W.; Shen, X.; Cui, J. B. Structure and photoluminescence study of silicon based two-dimensional Si2Te3 nanostructures. J. Appl. Phys. 2017, 122, 075701.CrossRefGoogle Scholar
  4. [4]
    Chen, J. Y.; Wu, K. Y.; Shen, X.; Hoang, T. B.; Cui, J. B. Probing the dynamics of photoexcited carriers in Si2Te3 nanowires. J. Appl. Phys. 2018, 125, 024306.CrossRefGoogle Scholar
  5. [5]
    Wu, K. Y.; Cui, J. B. Morphology control of Si2Te3 nanostructures synthesized by CVD. J. Mater. Sci. Mater. Electron. 2018, 29, 15643–15648.CrossRefGoogle Scholar
  6. [6]
    Wu, K. Y.; Chen, J. Y.; Shen, X.; Cui, J. B. Resistive switching in Si2Te3 nanowires. AIP Adv. 2018, 8, 125008.CrossRefGoogle Scholar
  7. [7]
    Bailey, L.G. Preparation and properties of silicon telluride. J. Phys. Chem. Solids 1966, 27, 1593–1598.CrossRefGoogle Scholar
  8. [8]
    Ploog, K.; Stetter, W.; Nowitzki, A.; Schönherr, E. Crystal growth and structure determination of silicon telluride Si2Te3. Mater. Res. Bull. 1976, 11, 1147–1153.CrossRefGoogle Scholar
  9. [9]
    Ziegler, K.; Birkholz, U. Photoelectric properties of Si2Te3 single crystals. Phys. Status Solidi A 1977, 39, 467–475.CrossRefGoogle Scholar
  10. [10]
    Juneja, R.; Pandey, T.; Singh, A. K. High thermoelectric performance in n-doped silicon-based chalcogenide Si2Te3. Chem. Mater. 2017, 29, 3723–3730.CrossRefGoogle Scholar
  11. [11]
    Wang, Q.; Quhe, R.; Guan, Z. X.; Wu, L. Y.; Bi, J. Y.; Guan, P. F.; Lei, M.; Lu, P. F. High n-type and p-type thermoelectric performance of two-dimensional SiTe at high temperature. RSC Adv. 2018, 8, 21280–21287.CrossRefGoogle Scholar
  12. [12]
    Wang, M. J.; Williams, D.; Lahti, G.; Teshima, S.; Dominguez Aguilar, D.; Perry, R.; Koski, K. J. Chemical intercalation of heavy metal, semimetal, and semiconductor atoms into 2D layered chalcogenides. 2D Mater. 2018, 5, 045005.CrossRefGoogle Scholar
  13. [13]
    Steinberg, S.; Stoffel, R. P.; Dronskowski, R. Search for the mysterious SiTe-An examination of the binary Si-Te system using first-principles-based methods. Cryst. Growth Des. 2016, 16, 6152–6155.CrossRefGoogle Scholar
  14. [14]
    Göbgen, K. C.; Steinberg, S.; Dronskowski, R. Revisiting the Si-Te system: SiTe2 finally found by means of experimental and quantum-chemical techniques. Inorg. Chem. 2017, 56, 11398–11405.CrossRefGoogle Scholar
  15. [15]
    Ma, Y.; Kou, L.; Dai, Y.; Heine, T. Proposed two-dimensional topological insulator in SiTe. Phys. Rev. B. 2016, 94, 201104.CrossRefGoogle Scholar
  16. [16]
    Mishra, R.; Mishra, P. K.; Phapale, S.; Babu, P. D.; Sastry, P. U.; Ravikumar, G.; Yadav, A. K. Evidences of the existence of SiTe2 crystalline phase and a proposed new Si-Te phase diagram. J. Solid State Chem. 2016, 237, 234–241.CrossRefGoogle Scholar
  17. [17]
    Shen, X.; Puzyrev, Y. S.; Combs, C.; Pantelides, S. T. Variability of structural and electronic properties of bulk and monolayer Si2Te3. Appl. Phys. Lett. 2016, 109, 113104.CrossRefGoogle Scholar
  18. [18]
    Powell, A. V. Intercalation compounds of low-dimensional transition metal chalcogenides. Annu. Rep. Sect. C: Phys. Chem. 1993, 90, 177–213.CrossRefGoogle Scholar
  19. [19]
    Zwick, U.; Rieder, K. H. Infrared and Raman study of Si2Te3. Z. Phys. B: Condens. Matter 1976, 25, 319–322.CrossRefGoogle Scholar
  20. [20]
    Mernagh, T. P.; Liu, L. G. Pressure dependence of Raman phonons of some group IVA (C, Si, and Ge) elements. J. Phys. Chem. Solids 1991, 52, 507–512.CrossRefGoogle Scholar
  21. [21]
    Marini, C.; Chermisi, D.; Lavagnini, M.; Di Castro, D.; Petrillo, C.; Degiorgi, L.; Scandolo, S.; Postorino, P. High-pressure phases of crystalline tellurium: A combined Raman and ab initio study. Phys. Rev. B 2012, 86, 064103.CrossRefGoogle Scholar
  22. [22]
    Baughman, R. H.; Stafström, S.; Cui, C. X.; Dantas, S. O. Materials with negative compressibilities in one or more dimensions. Science 1998, 279, 1522–1524.CrossRefGoogle Scholar
  23. [23]
    Cairns, A. B.; Goodwin, A. L. Negative linear compressibility. Phys. Chem. Chem. Phys. 2015, 17, 20449–20465.CrossRefGoogle Scholar
  24. [24]
    Loa, I.; Syassen, K.; Kremer, R. K. Vibrational properties of NaV2O5 under high pressure studied by Raman spectroscopy. Solid State Commun. 1999, 112, 681–685.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Virginia L. Johnson
    • 1
  • Auddy Anilao
    • 1
  • Kristie J. Koski
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of California DavisDavisUSA

Personalised recommendations