Advertisement

Low-cost, simple, and scalable self-assembly of DNA origami nanostructures

  • Patrick D. Halley
  • Randy A. Patton
  • Amjad Chowdhury
  • John C. Byrd
  • Carlos E. CastroEmail author
Research Article
  • 103 Downloads

Abstract

Despite demonstrating exciting potential for applications such as drug delivery and biosensing, the development of nanodevices for practical applications and broader use in research and education are still hindered by the time, effort, and cost associated with DNA origami fabrication. Simple and robust methods to perform and scale the DNA origami self-assembly process are critical to facilitate broader use and translation to industrial or clinical applications. We report a simple approach to fold DNA origami nanostructures that is fast, robust, and scalable. We demonstrate fabrication at scales approximately 100–1,500-fold higher than typical scales. We further demonstrate an approach we termed low-cost efficient annealing (LEAN) self-assembly involving initial heating at 65 °C for 10 min, then annealing at 51 °C for 2 h, followed by brief quenching at 4 °C that leads to effective assembly of a range of DNA origami structures tested. In contrast to other methods for scaling DNA origami assembly, this approach can be carried out using cheap and widely available equipment (e.g., hot plates, water baths, and laboratory burners) and uses standard recipes and materials so is readily applied to any existing or new DNA origami designs. We envision these methods can facilitate device development for commercial applications and facilitate broader use of DNA origami in research and education.

Keywords

DNA origami DNA nanotechnology self assembly scalable nanofabrication low cost fabrication nanotechnology education 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by grants from the National Science Foundation (Award No. 1351159 to CEC) and the National Institute of Health (Award No. R01HL141941 to CEC and R35 CA197734 to JCB), and in part by D. Warren Brown Foundation, Four Winds Foundation, and the Harry T. Mangurian Jr Foundation. The authors also thank the Campus Microscopy and Imaging Facility and the NanoSystems Lab at The Ohio State University for imaging support and members of the Castro Lab, especially Dr. Chris Lucas, Josh Johnson, Jenny Le, and Molly Mollica for their feedback and suggestions for this work.

Supplementary material

12274_2019_2384_MOESM1_ESM.pdf (13.8 mb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.CrossRefGoogle Scholar
  2. [2]
    Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009, 459, 414–418.CrossRefGoogle Scholar
  3. [3]
    Castro, C. E.; Kilchherr, F.; Kim, D. N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H. A primer to scaffolded DNA origami. Nat. Methods 2011, 8, 221–229.CrossRefGoogle Scholar
  4. [4]
    Ke, Y. G.; Castro, C.; Choi, J. H. Structural DNA nanotechnology: Artificial nanostructures for biomedical research. Annu. Rev. Biomed. Eng. 2018, 20, 375–401.CrossRefGoogle Scholar
  5. [5]
    Wang, P. F.; Meyer, T. A.; Pan, V.; Dutta, P. K.; Ke, Y. G. The beauty and utility of DNA origami. Chem 2017, 2, 359–382.CrossRefGoogle Scholar
  6. [6]
    Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Högberg, B. DNA rendering of polyhedral meshes at the nanoscale. Nature 2015, 523, 441–444.CrossRefGoogle Scholar
  7. [7]
    Matthies, M.; Agarwal, N. P.; Schmidt, T. L. Design and synthesis of triangulated DNA origami trusses. Nano Lett. 2016, 16, 2108–2113.CrossRefGoogle Scholar
  8. [8]
    Veneziano, R.; Ratanalert, S.; Zhang, K. M.; Zhang, F.; Yan, H.; Chiu, W.; Bathe, M. Designer nanoscale DNA assemblies programmed from the top down. Science 2016, 352, 1534.CrossRefGoogle Scholar
  9. [9]
    Zhao, Y. X.; Shaw, A.; Zeng, X. H.; Benson, E.; Nyström, A. M.; Högberg, B. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 2012, 6, 8684–8691.CrossRefGoogle Scholar
  10. [10]
    Jiang, Q.; Song, C.; Nangreave, J.; Liu, X. W.; Lin, L.; Qiu, D. L.; Wang, Z. G.; Zou, G. Z.; Liang, X. J.; Yan, H. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 2012, 134, 13396–133403.CrossRefGoogle Scholar
  11. [11]
    Zhang, Q.; Jiang, Q.; Li, N.; Dai, L. R.; Liu, Q.; Song, L. L.; Wang, J. Y.; Li, Y. Q.; Tian, J.; Ding, B. Q. et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 2014, 8, 6633–6643.CrossRefGoogle Scholar
  12. [12]
    Halley, P. D.; Lucas, C. R.; McWilliams, E. M.; Webber, M. J.; Patton, R. A.; Kural, C.; Lucas, D. M.; Byrd, J. C.; Castro, C. E. Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model. Small 2016, 12, 308–320.CrossRefGoogle Scholar
  13. [13]
    Banerjee, A.; Bhatia, D.; Saminathan, A.; Chakraborty, S.; Kar, S.; Krishnan, Y. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem., Int. Ed. 2013, 52, 6854–6857.CrossRefGoogle Scholar
  14. [14]
    Douglas, S. M.; Bachelet, I.; Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012, 335, 831–834.CrossRefGoogle Scholar
  15. [15]
    Kuzuya, A.; Sakai, Y.; Yamazaki, T.; Xu, Y.; Komiyama, M. Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat. Commun. 2011, 2, 449.CrossRefGoogle Scholar
  16. [16]
    Pfitzner, E.; Wachauf, C.; Kilchherr, F.; Pelz, B.; Shih, W. M.; Rief, M.; Dietz, H. Rigid DNA beams for high-resolution single-molecule mechanics. Angew. Chem., Int. Ed. 2013, 52, 7766–7771.CrossRefGoogle Scholar
  17. [17]
    Czogalla, A.; Kauert, D. J.; Seidel, R.; Schwille, P.; Petrov, E. P. DNA origami nanoneedles on freestanding lipid membranes as a tool to observe isotropic-nematic transition in two dimensions. Nano Lett. 2015, 15, 649–655.CrossRefGoogle Scholar
  18. [18]
    Le, J. V.; Luo, Y.; Darcy, M. A.; Lucas, C. R.; Goodwin, M. F.; Poirier, M. G.; Castro, C. E. Probing nucleosome stability with a DNA origami nanocaliper. ACS Nano 2016, 10, 7073–7084.CrossRefGoogle Scholar
  19. [19]
    Hudoba, M. W.; Luo, Y.; Zacharias, A.; Poirier, M. G.; Castro, C. E. Dynamic DNA origami device for measuring compressive depletion forces. ACS Nano 2017, 11, 6566–6573.CrossRefGoogle Scholar
  20. [20]
    Funke, J. J.; Ketterer, P.; Lieleg, C.; Schunter, S.; Korber, P.; Dietz, H. Uncovering the forces between nucleosomes using DNA origami. Sci. Adv. 2016, 2, e1600974.CrossRefGoogle Scholar
  21. [21]
    Voigt, N. V.; Tørring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsbaek, J. B.; Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher, F. et al. Single-molecule chemical reactions on DNA origami. Nat. Nanotechnol. 2010, 5, 200–203.CrossRefGoogle Scholar
  22. [22]
    Linko, V.; Eerikäinen, M.; Kostiainen, M. A. A modular DNA origami-based enzyme cascade nanoreactor. Chem. Commun. 2015, 51, 5351–5354.CrossRefGoogle Scholar
  23. [23]
    Praetorius, F.; Kick, B.; Behler, K. L.; Honemann, M. N.; Weuster-Botz, D.; Dietz, H. Biotechnological mass production of DNA origami. Nature 2017, 552, 84–87.CrossRefGoogle Scholar
  24. [24]
    Li, S. P.; Jiang, Q.; Liu, S. L.; Zhang, Y. L.; Tian, Y. H.; Song, C.; Wang, J.; Zou, Y. G.; Anderson, G. J.; Han, J. Y. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258–264.CrossRefGoogle Scholar
  25. [25]
    Ponnuswamy, N.; Bastings, M. M. C.; Nathwani, B.; Ryu, J. H.; Chou, L. Y. T.; Vinther, M.; Li, W. A.; Anastassacos, F. M.; Mooney, D. J.; Shih, W. M. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 2017, 8, 15654.CrossRefGoogle Scholar
  26. [26]
    Jiang, D. W.; Ge, Z. L.; Im, H. J.; England, C. G.; Ni, D. L.; Hou, J. J.; Zhang, L. H.; Kutyreff, C. J.; Yan, Y. J.; Liu, Y. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2018, 2, 865–877.CrossRefGoogle Scholar
  27. [27]
    Sobczak, J. P. J.; Martin, T. G.; Gerling, T.; Dietz, H. Rapid folding of DNA into nanoscale shapes at constant temperature. Science 2012, 338, 1458–1461.CrossRefGoogle Scholar
  28. [28]
    Wagenbauer, K. F.; Engelhardt, F. A. S.; Stahl, E.; Hechtl, V. K.; Stömmer, P.; Seebacher, F.; Meregalli, L.; Ketterer, P.; Gerling, T.; Dietz, H. How we make DNA origami. Chembiochem 2017, 18, 1873–1885.CrossRefGoogle Scholar
  29. [29]
    Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M. T.; Park, S. H.; Labean, T. H.; Reif, J. H. Programming DNA tube circumferences. Science 2008, 321, 824–826.CrossRefGoogle Scholar
  30. [30]
    Kuzyk, A.; Laitinen, K. T.; Törmä, P. DNA origami as a nanoscale template for protein assembly. Nanotechnology 2009, 20, 235305.CrossRefGoogle Scholar
  31. [31]
    Akbari, E.; Mollica, M. Y.; Lucas, C. R.; Bushman, S. M.; Patton, R. A.; Shahhosseini, M.; Song, J. W.; Castro, C. E. Engineering cell surface function with DNA origami. Adv. Mater. 2017, 29, 1703632.CrossRefGoogle Scholar
  32. [32]
    Marras, A. E.; Zhou, L. F.; Su, H. J.; Castro, C. E. Programmable motion of DNA origami mechanisms. Proc. Natl. Acad. Sci. USA 2015, 112, 713–718.CrossRefGoogle Scholar
  33. [33]
    Lei, D. S.; Marras, A. E.; Liu, J. F.; Huang, C. M.; Zhou, L. F.; Castro, C. E.; Su, H. J.; Ren, G. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography. Nat. Commun. 2018, 9, 592.CrossRefGoogle Scholar
  34. [34]
    Ke, Y. G.; Douglas, S. M.; Liu, M. H.; Sharma, J.; Cheng, A. C.; Leung, A.; Liu, Y.; Shih, W. M.; Yan, H. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 2009, 131, 15903–15908.CrossRefGoogle Scholar
  35. [35]
    Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H. DNA gridiron nanostructures based on four-arm junctions. Science 2013, 339, 1412–1415.CrossRefGoogle Scholar
  36. [36]
    Nafisi, P. M.; Aksel, T.; Douglas, S. M. Construction of a novel phagemid to produce custom DNA origami scaffolds. Synth. Biol. 2018, 3, ysy015.CrossRefGoogle Scholar
  37. [37]
    Marchi, A. N.; Saaem, I.; Vogen, B. N.; Brown, S.; LaBean, T. H. Toward larger DNA origami. Nano Lett. 2014, 14, 5740–5747.CrossRefGoogle Scholar
  38. [38]
    Said, H.; Schüller, V. J.; Eber, F. J.; Wege, C.; Liedl, T.; Richert, C. M1.3-A small scaffold for DNA origami. Nanoscale 2013, 5, 284–290.CrossRefGoogle Scholar
  39. [39]
    Veneziano, R.; Shepherd, T. R.; Ratanalert, S.; Bellou, L.; Tao, C. Q.; Bathe, M. In vitro synthesis of gene-length single-stranded DNA. Sci. Rep. 2018, 8, 6548.CrossRefGoogle Scholar
  40. [40]
    Cui, Y.; Chen, R. P.; Kai, M. X.; Wang, Y. Q.; Mi, Y. L.; Wei, B. Versatile DNA origami nanostructures in simplified and modular designing framework. ACS Nano 2017, 11, 8199–8206.CrossRefGoogle Scholar
  41. [41]
    Kumar, A.; Liang, Z. C. Chemical nanoprinting: A novel method for fabricating DNA microchips. Nucleic Acids Res. 2001, 29, e2.CrossRefGoogle Scholar
  42. [42]
    Ma, S. Y.; Tang, N.; Tian, J. D. DNA synthesis, assembly and applications in synthetic biology. Curr. Opin. Chem. Biol. 2012, 16, 260–267.CrossRefGoogle Scholar
  43. [43]
    Marchi, A. N.; Saaem, I.; Tian, J. D.; LaBean, T. H. One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold. ACS Nano 2013, 7, 903–910.CrossRefGoogle Scholar
  44. [44]
    Quan, J. Y.; Saaem, I.; Tang, N.; Ma, S. Y.; Negre, N.; Gong, H.; White, K. P.; Tian, J. D. Parallel on-chip gene synthesis and application to optimization of protein expression. Nat. Biotechnol. 2011, 29, 449–452.CrossRefGoogle Scholar
  45. [45]
    Ducani, C.; Kaul, C.; Moche, M.; Shih, W. M.; Högberg, B. Enzymatic production of ‘monoclonal stoichiometric’ single-stranded DNA oligonucleotides. Nat. Methods 2013, 10, 647–652.CrossRefGoogle Scholar
  46. [46]
    Linko, V.; Kostiainen, M. A. Automated design of DNA origami. Nat. Biotechnol. 2016, 34, 826–827.CrossRefGoogle Scholar
  47. [47]
    Lin, C. X.; Perrault, S. D.; Kwak, M.; Graf, F.; Shih, W. M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 2013, 41, e40.CrossRefGoogle Scholar
  48. [48]
    Shaw, A.; Benson, E.; Högberg, B. Purification of functionalized DNA origami nanostructures. ACS Nano 2015, 9, 4968–4975.CrossRefGoogle Scholar
  49. [49]
    Stahl, E.; Martin, T. G.; Praetorius, F.; Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem., Int. Ed. 2014, 53, 12735–12740.CrossRefGoogle Scholar
  50. [50]
    Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 2009, 37, 5001–5006.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Patrick D. Halley
    • 1
    • 2
  • Randy A. Patton
    • 2
  • Amjad Chowdhury
    • 1
  • John C. Byrd
    • 3
  • Carlos E. Castro
    • 2
    • 4
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.Division of Hematology, Department of Internal Medicine, and OSU Comprehensive Cancer CenterThe Ohio State UniversityColumbusUSA
  4. 4.Biophysics Graduate ProgramThe Ohio State UniversityColumbusUSA

Personalised recommendations