Towards maximized utilization of iridium for the acidic oxygen evolution reaction

  • Marc LedendeckerEmail author
  • Simon Geiger
  • Katharina Hengge
  • Joohyun Lim
  • Serhiy Cherevko
  • Andrea M. Mingers
  • Daniel Göhl
  • Guilherme V. Fortunato
  • Daniel Jalalpoor
  • Ferdi Schüth
  • Christina Scheu
  • Karl J. J. MayrhoferEmail author
Open Access
Research Article


The reduction in noble metal content for efficient oxygen evolution catalysis is a crucial aspect towards the large scale commercialisation of polymer electrolyte membrane electrolyzers. Since catalytic stability and activity are inversely related, long service lifetime still demands large amounts of low-abundant and expensive iridium. In this manuscript we elaborate on the concept of maximizing the utilisation of iridium for the oxygen evolution reaction. By combining different tin oxide based support materials with liquid atomic layer deposition of iridium oxide, new possibilities are opened up to grow thin layers of iridium oxide with tuneable noble metal amounts. In-situ, time- and potential-resolved dissolution experiments reveal how the stability of the substrate and the catalyst layer thickness directly affect the activity and stability of deposited iridium oxide. Based on our results, we elaborate on strategies how to obtain stable and active catalysts with maximized iridium utilisation for the oxygen evolution reaction and demonstrate how the activity and durability can be tailored correspondingly. Our results highlight the potential of utilizing thin noble metal films with earth abundant support materials for future catalytic applications in the energy sector.


oxygen evolution reaction liquid atomic layer deposition catalysis iridium core-shell nanoparticles 



This research has been funded by the Federal Ministry for Economic Affairs and Energy (BMWi) of Germany in the framework of PtTM@HGS (No. 03ET6080A). G. V. F. thanks CAPES for the PDSE fellowship (No. 88881.131904/2016-01).

Supplementary material

12274_2019_2383_MOESM1_ESM.pdf (3.7 mb)
Supplementary material, approximately 228 KB.


  1. [1]
    Kasian, O.; Geiger, S.; Stock, P.; Polymeros, G.; Breitbach, B.; Savan, A.; Ludwig, A.; Cherevko, S.; Mayrhofer, K. J. J. On the origin of the improved ruthenium stability in RuO2-IrO2 mixed oxides. J. Electrochem. Soc. 2016, 163, F3099–F3104.CrossRefGoogle Scholar
  2. [2]
    Cherevko, S.; Zeradjanin, A. R.; Topalov, A. A.; Kulyk, N.; Katsounaros, I.; Mayrhofer, K. J. J. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 2014, 6, 2219–2223.CrossRefGoogle Scholar
  3. [3]
    Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers, A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z. Z.; Oellers, T.; Fruchter, L. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 2018, 1, 508–515.CrossRefGoogle Scholar
  4. [4]
    Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170–180.CrossRefGoogle Scholar
  5. [5]
    Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.CrossRefGoogle Scholar
  6. [6]
    Diaz-Morales, O.; Raaijman, S.; Kortlever, R.; Kooyman, P. J.; Wezendonk, T.; Gascon, J.; Fu, W. T.; Koper, M. T. M. Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun. 2016, 7, 12363.CrossRefGoogle Scholar
  7. [7]
    Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D. B.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Water-splitting electrocatalysis in acid conditions using ruthenate-iridate pyrochlores. Angew. Chem., Int. Ed. 2014, 53, 10960–10964.CrossRefGoogle Scholar
  8. [8]
    Sun, W.; Liu, J. Y.; Gong, X. Q.; Zaman, W. Q.; Cao, L. M.; Yang, J. OER activity manipulated by IrO6 coordination geometry: An insight from pyrochlore iridates. Sci. Rep. 2016, 6, 38429.CrossRefGoogle Scholar
  9. [9]
    Sun, W.; Song, Y.; Gong, X. Q.; Cao, L. M.; Yang, J. Hollandite structure Kx ≈ 0.25IrO2 catalyst with Highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 820–826.CrossRefGoogle Scholar
  10. [10]
    Ledendecker, M.; Krick Calderon, S.; Papp, C.; Steinruck, H. P.; Antonietti, M.; Shalom, M. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 12361–12365.CrossRefGoogle Scholar
  11. [11]
    Ledendecker, M.; Mondschein, J. S.; Kasian, O.; Geiger, S.; Gohl, D.; Schalenbach, M.; Zeradjanin, A.; Cherevko, S.; Schaak, R. E.; Mayrhofer, K. Stability and activity of non-noble-metal-based catalysts toward the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 9767–9771.CrossRefGoogle Scholar
  12. [12]
    Schalenbach, M.; Speck, F. D.; Ledendecker, M.; Kasian, O.; Goehl, D.; Mingers, A. M.; Breitbach, B.; Springer, H.; Cherevko, S.; Mayrhofer, K. J. J. Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochim. Acta 2018, 259, 1154–1161.CrossRefGoogle Scholar
  13. [13]
    Oh, H. S.; Nong, H. N.; Reier, T.; Bergmann, A.; Gliech, M.; de Araujo, J. F.; Willinger, E.; Schlogl, R.; Teschner, D.; Strasser, P. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 12552–12563.CrossRefGoogle Scholar
  14. [14]
    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.CrossRefGoogle Scholar
  15. [15]
    Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.CrossRefGoogle Scholar
  16. [16]
    Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. 2006, 118, 2963–2967.CrossRefGoogle Scholar
  17. [17]
    Hsieh, Y. C.; Zhang, Y.; Su, D.; Volkov, V.; Si, R.; Wu, L. J.; Zhu, Y. M.; An, W.; Liu, P.; He, P. et al. Ordered bilayer ruthenium.platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 2013, 4, 2466.CrossRefGoogle Scholar
  18. [18]
    Wang, L.; Gao, W. P.; Liu, Z. Y.; Zeng, Z. H.; Liu, Y. F.; Giroux, M.; Chi, M. F.; Wang, G. F.; Greeley, J.; Pan, X. Q. et al. Core-shell nanostructured cobalt-platinum electrocatalysts with enhanced durability. ACS Catal. 2018, 8, 35–42.CrossRefGoogle Scholar
  19. [19]
    Wang, J. X.; Inada, H.; Wu, L. J.; Zhu, Y. M.; Choi, Y.; Liu, P.; Zhou, W. P.; Adzic, R. R. Oxygen reduction on well-defined core-shell nanocatalysts: Particle size, Facet, and Pt shell thickness effects. J. Am. Chem. Soc. 2009, 131, 17298–17302.CrossRefGoogle Scholar
  20. [20]
    Geiger, S.; Kasian, O.; Mingers, A. M.; Mayrhofer, K. J. J.; Cherevko, S. Stability limits of tin-based electrocatalyst supports. Sci. Rep. 2017, 7, 4595.CrossRefGoogle Scholar
  21. [21]
    Nong, H. N.; Oh, H. S.; Reier, T.; Willinger, E.; Willinger, M. G.; Petkov, V.; Teschner, D.; Strasser, P. Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew. Chem., Int. Ed. 2015, 54, 2975–2979.CrossRefGoogle Scholar
  22. [22]
    Oh, H. S.; Nong, H. N.; Reier, T.; Gliech, M.; Strasser, P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem. Sci. 2015, 6, 3321–3328.CrossRefGoogle Scholar
  23. [23]
    Puthiyapura, V. K.; Mamlouk, M.; Pasupathi, S.; Pollet, B. G.; Scott, K. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser. J. Power Sources 2014, 269, 451–460.CrossRefGoogle Scholar
  24. [24]
    Puthiyapura, V. K.; Pasupathi, S.; Su, H. N.; Liu, X. T.; Pollet, B.; Scott, K. Investigation of supported IrO2 as electrocatalyst for the oxygen evolution reaction in proton exchange membrane water electrolyser. Int. J. Hydrogen Energy 2014, 39, 1905–1913.CrossRefGoogle Scholar
  25. [25]
    Kadakia, K. S.; Jampani, P. H.; Velikokhatnyi, O. I.; Datta, M. K.; Park, S. K.; Hong, D. H.; Chung, S. J.; Kumta, P. N. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis. J. Power Sources 2014, 269, 855–865.CrossRefGoogle Scholar
  26. [26]
    Velikokhatnyi, O. I.; Kadakia, K.; Datta, M. K.; Kumta, P. N. Fluorine-doped IrO2: A potential electrocatalyst for water electrolysis. J. Phys. Chem. C 2013, 117, 20542–20547.CrossRefGoogle Scholar
  27. [27]
    Kadakia, K.; Datta, M. K.; Velikokhatnyi, O. I.; Jampani, P.; Park, S. K.; Saha, P.; Poston, J. A.; Manivannan, A.; Kumta, P. N. Novel (Ir, Sn, Nb)O2 anode electrocatalysts with reduced noble metal content for PEM based water electrolysis. Int. J. Hydrogen Energy 2012, 37, 3001–3013.CrossRefGoogle Scholar
  28. [28]
    Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933–7947.CrossRefGoogle Scholar
  29. [29]
    Garcia-Melchor, M.; Vilella, L.; Lopez, N.; Vojvodic, A. Computationally probing the performance of hybrid, heterogeneous, and homogeneous iridium-based catalysts for water oxidation. ChemCatChem 2016, 8, 1792–1798.CrossRefGoogle Scholar
  30. [30]
    Schley, N. D.; Blakemore, J. D.; Subbaiyan, N. K.; Incarvito, C. D.; D’Souza, F.; Crabtree, R. H.; Brudvig, G. W. Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. J. Am. Chem. Soc. 2011, 133, 10473–10481.CrossRefGoogle Scholar
  31. [31]
    Sheehan, S. W.; Thomsen, J. M.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W.; Schmuttenmaer, C. A. A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nat. Commun. 2015, 6, 6469.CrossRefGoogle Scholar
  32. [32]
    Thomsen, J. M.; Sheehan, S. W.; Hashmi, S. M.; Campos, J.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W. Electrochemical activation of Cp* iridium complexes for electrode-driven water-oxidation catalysis. J. Am. Chem. Soc. 2014, 136, 13826–13834.CrossRefGoogle Scholar
  33. [33]
    Hull, J. F.; Balcells, D.; Blakemore, J. D.; Incarvito, C. D.; Eisenstein, O.; Brudvig, G. W.; Crabtree, R. H. Highly active and robust Cp* iridium complexes for catalytic water oxidation. J. Am. Chem. Soc. 2009, 131, 8730–8731.CrossRefGoogle Scholar
  34. [34]
    Hetterscheid, D. G. H.; Reek, J. N. H. Me2-NHC based robust Ir catalyst for efficient water oxidation. Chem. Commun. 2011, 47, 2712–2714.CrossRefGoogle Scholar
  35. [35]
    Hintermair, U.; Sheehan, S. W.; Parent, A. R.; Ess, D. H.; Richens, D. T.; Vaccaro, P. H.; Brudvig, G. W.; Crabtree, R. H. Precursor transformation during molecular oxidation catalysis with organometallic iridium complexes. J. Am. Chem. Soc. 2013, 135, 10837–10851.CrossRefGoogle Scholar
  36. [36]
    Sheehan, S. W.; Thomsen, J. M.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W.; Schmuttenmaer, C. A. A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nat. Commun. 2015, 6, 6469.CrossRefGoogle Scholar
  37. [37]
    Saruyama, M.; Kim, S.; Nishino, T.; Sakamoto, M.; Haruta, M.; Kurata, H.; Akiyama, S.; Yamada, T.; Domen, K.; Teranishi, T. Phase-segregated NiPx@FePyOz core@shell nanoparticles: Ready-to-use nanocatalysts for electro- and photo-catalytic water oxidation through in situ activation by structural transformation and spontaneous ligand removal. Chem. Sci. 2018, 9, 4830–4836.CrossRefGoogle Scholar
  38. [38]
    Pizzutilo, E.; Knossalla, J.; Geiger, S.; Grote, J. P.; Polymeros, G.; Baldizzone, C.; Mezzavilla, S.; Ledendecker, M.; Mingers, A.; Cherevko, S. et al. The space confinement approach using hollow graphitic spheres to unveil activity and stability of Pt-Co nanocatalysts for PEMFC. Adv. Energy Mater. 2017, 7, 1700835.CrossRefGoogle Scholar
  39. [39]
    De Pauli, C. P.; Trasatti, S. Electrochemical surface characterization of IrO2 + SnO2 mixed oxide electrocatalysts. J. Electroanal. Chem. 1995, 396, 161–168.CrossRefGoogle Scholar
  40. [40]
    Wu, Y. L.; Dohler, D.; Barr, M.; Oks, E.; Wolf, M.; Santinacci, L.; Bachmann, J. Atomic layer deposition from dissolved precursors. Nano Lett. 2015, 15, 6379–6385.CrossRefGoogle Scholar
  41. [41]
    Reier, T.; Teschner, D.; Lunkenbein, T.; Bergmann, A.; Selve, S.; Kraehnert, R.; Schlogl, R.; Strasser, P. Electrocatalytic oxygen evolution on iridium oxide: Uncovering catalyst-substrate interactions and active iridium oxide species. J. Electrochem. Soc. 2014, 161, F876–F882.CrossRefGoogle Scholar
  42. [42]
    Gottesfeld, S.; Srinivasan, S. Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction. J. Electroanal. Chem. Interfacial Electrochem. 1978, 86, 89–104.CrossRefGoogle Scholar
  43. [43]
    Geiger, S.; Kasian, O.; Shrestha, B. R.; Mingers, A. M.; Mayrhofer, K. J. J.; Cherevko, S. Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction. J. Electrochem. Soc. 2016, 163, F3132–F3138.CrossRefGoogle Scholar
  44. [44]
    Lodi, G.; De Battisti, A.; Benedetti, A.; Fagherazzi, G.; Kristof, J. Formation of iridium metal in thermally prepared iridium dioxide coatings. J. Electroanal. Chem. Interfacial Electrochem. 1988, 256, 441–445.CrossRefGoogle Scholar
  45. [45]
    Hu, W.; Chen, S. L. Grain size effect of IrO2 nanocatalysts for the oxygen evolution reaction. Wuhan Univ. J. Nat. Sci. 2013, 18, 289–294.CrossRefGoogle Scholar
  46. [46]
    Trasatti, S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 1984, 29, 1503–1512.CrossRefGoogle Scholar
  47. [47]
    Kotz, R.; Neff, H.; Stucki, S. Anodic iridium oxide films: XPS-studies of oxidation state changes and O2 evolution. J. Electrochem. Soc. 1984, 131, 72–77.CrossRefGoogle Scholar
  48. [48]
    Pfeifer, V.; Jones, T. E.; Velasco Velez, J. J.; Massue, C.; Greiner, M. T.; Arrigo, R.; Teschner, D.; Girgsdies, F.; Scherzer, M.; Allan, J. et al. The electronic structure of iridium oxide electrodes active in water splitting. Phys. Chem. Chem. Phys. 2016, 18, 2292–2296.CrossRefGoogle Scholar
  49. [49]
    Kim, J. S.; Friend, R. H.; Cacialli, F. Surface energy and polarity of treated indium.tin.oxide anodes for polymer light-emitting diodes studied by contact-angle measurements. J. Appl. Phys. 1999, 86, 2774–2778.CrossRefGoogle Scholar
  50. [50]
    Matz, O.; Calatayud, M. Periodic DFT study of rutile IrO2: Surface reactivity and catechol adsorption. J. Phys. Chem. C 2017, 121, 13135–13143.CrossRefGoogle Scholar
  51. [51]
    Sen, F. G.; Kinaci, A.; Narayanan, B.; Gray, S. K.; Davis, M. J.; Sankaranarayanan, S. K. R. S.; Chan, M. K. Y. Towards accurate prediction of catalytic activity in IrO2 nanoclusters via first principles-based variable charge force field. J. Mater. Chem. A 2015, 3, 18970–18982.CrossRefGoogle Scholar
  52. [52]
    Wang, X.; Yin, Q. Q.; Tang, Z. Z.; Liu, X. H.; Tang, D.; Lin, W. The nature of phase separation in Ir-Sn-O ternary oxide electrocatalyst. J. Eur. Ceram. Soc. 2013, 33, 3045–3052.CrossRefGoogle Scholar
  53. [53]
    Nong, H. N.; Reier, T.; Oh, H. S.; Gliech, M.; Paciok, P.; Vu, T. H. T.;Teschner, D.; Heggen, M.; Petkov, V.; Schlogl, R. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts. Nat. Catal. 2018, 1, 841–851.CrossRefGoogle Scholar
  54. [54]
    Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.CrossRefGoogle Scholar
  55. [55]
    Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.CrossRefGoogle Scholar
  56. [56]
    Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J. Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochem. Commun. 2011, 13, 1533–1535.CrossRefGoogle Scholar

Copyright information

© The author(s) 2019

Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Authors and Affiliations

  • Marc Ledendecker
    • 1
    Email author
  • Simon Geiger
    • 1
  • Katharina Hengge
    • 1
  • Joohyun Lim
    • 1
  • Serhiy Cherevko
    • 3
  • Andrea M. Mingers
    • 1
  • Daniel Göhl
    • 1
  • Guilherme V. Fortunato
    • 1
    • 5
  • Daniel Jalalpoor
    • 2
  • Ferdi Schüth
    • 2
  • Christina Scheu
    • 1
  • Karl J. J. Mayrhofer
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Interface Chemistry and Surface EngineeringNanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  2. 2.Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungMülheim an der RuhrGermany
  3. 3.Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum JülichErlangenGermany
  4. 4.Department of Chemical and Biological EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  5. 5.Institute of ChemistryUniversidade Federal de Mato Grosso do SulCampo Grande, MSBrazil

Personalised recommendations