Advertisement

One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery

  • Xiao-Fei Yu
  • Dong-Xu Tian
  • Wen-Cui Li
  • Bin He
  • Yu Zhang
  • Zhi-Yuan Chen
  • An-Hui LuEmail author
Research Article
  • 87 Downloads

Abstract

Lithium sulfur battery has been identified as a promising candidate for next storage devices attributing to ultrahigh energy density. However, non-conductive nature of sulfur and shuttling effect of soluble lithium polysulfides are intractable remaining problems. Herein, we develop a highly conductive nickel-rich Ni12P5/CNTs hybrid with high specific surface area as sulfur host to address these issues. The polar nature of Ni12P5/CNTs can significantly relieve the shuttle effect by means of a strong affinity towards lithium polysulfides and enhance kinetics of polysulfides redox reactions. In addition, the Ni12P5/CNTs with a superior conductivity (500 S·m−1) and high surface area of 395 m2·g−1 enables the effective electron transfer and expedited interfacial reaction. As a result, Ni12P5/CNTs hosted sulfur cathode exhibits high rate capability (784 mAh·g−1 at 4 C) and stable cycling performance with a negligible capacity fading of 0.057 % per cycle over 1,000 cycles at 0.5 C. This work paves an alternative way for designing high performance sulfur cathodes involved metal-rich phosphides.

Keywords

Ni-rich phosphides carbon nanotube high conductivity catalytic effect lithium sulfur battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to the financial support by the National Natural Science Foundation of China (Nos. 21776041 and 21875028), and Cheung Kong Scholars Programme of China (No. T2015036).

Supplementary material

12274_2019_2381_MOESM1_ESM.pdf (3.6 mb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  2. [2]
    Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.CrossRefGoogle Scholar
  3. [3]
    Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.CrossRefGoogle Scholar
  4. [4]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  5. [5]
    Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.CrossRefGoogle Scholar
  6. [6]
    Urbonaite, S.; Poux, T.; Novák, P. Progress towards commercially viable Li-S battery cells. Adv. Energy Mater. 2015, 5, 1500118.CrossRefGoogle Scholar
  7. [7]
    Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.CrossRefGoogle Scholar
  8. [8]
    Moon, S.; Jung, Y. H.; Jung, W. K.; Jung, D. S.; Choi, J. W.; Kim, D. K. Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries. Adv. Mater. 2013, 25, 6547–6553.CrossRefGoogle Scholar
  9. [9]
    Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162.CrossRefGoogle Scholar
  10. [10]
    Zhang, Z.; Wu, D. H.; Zhou, Z.; Li, G. R.; Liu, S.; Gao, X. P. Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery. Sci. China Mater. 2019, 62, 74–86, DOI:  https://doi.org/10.1007/s40843-018-9292-7.CrossRefGoogle Scholar
  11. [11]
    He, B.; Li, W. C.; Yang, C.; Wang, S. Q.; Lu, A. H. Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: An electrolysis approach. ACS Nano 2016, 10, 1633–1639.CrossRefGoogle Scholar
  12. [12]
    Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.CrossRefGoogle Scholar
  13. [13]
    Hu, G. J; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.CrossRefGoogle Scholar
  14. [14]
    Zhao, M. Q.; Peng, H. J.; Tian, G. L.; Zhang, Q.; Huang, J. Q.; Cheng, X. B.; Tang, C.; Wei, F. Hierarchical vine-tree-like carbon nanotube architectures: In-situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries. Adv. Mater. 2014, 26, 7051–7058.CrossRefGoogle Scholar
  15. [15]
    Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.CrossRefGoogle Scholar
  16. [16]
    Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 2018, 11, 1238–1246.CrossRefGoogle Scholar
  17. [17]
    Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. Flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641–647.CrossRefGoogle Scholar
  18. [18]
    Sun, Q.; He, B.; Zhang, X. Q.; Lu, A. H. Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries. ACS Nano 2015, 9, 8504–8513.CrossRefGoogle Scholar
  19. [19]
    Zhang, L. H.; He, B.; Li, W. C.; Lu, A. H. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for Lithium-Sulfur cathode. Adv. Energy Mater. 2017, 7, 1701518.CrossRefGoogle Scholar
  20. [20]
    Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W. C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for Lithium-Sulfur battery. ACS Appl. Mater. Interfaces 2013, 5, 2208–2213.CrossRefGoogle Scholar
  21. [21]
    Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 127, 4399–4403.CrossRefGoogle Scholar
  22. [22]
    Yang, C. P.; Yin, Y. X.; Ye, H; Jiang, K. C.; Zhang, J.; Guo, Y. G. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 8789–8795.CrossRefGoogle Scholar
  23. [23]
    Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance Lithium-Sulfur batteries. ACS Nano 2013, 7, 5367–5375.CrossRefGoogle Scholar
  24. [24]
    Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.CrossRefGoogle Scholar
  25. [25]
    Gu, X. X.; Tong, C. J.; Lai, C.; Qiu, J. X.; Huang, X. X.; Yang, W. L.; Wen, B.; Liu, L. M.; Hou, Y. L.; Zhang, S. Q. A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li-S batteries. J. Mater. Chem. A 2015, 3, 16670–16678.CrossRefGoogle Scholar
  26. [26]
    Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.CrossRefGoogle Scholar
  27. [27]
    Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.CrossRefGoogle Scholar
  28. [28]
    Li, C. X.; Xi, Z. C.; Guo, D. X.; Chen, X. J.; Yin, L. W. Chemical immobilization effect on Lithium polysulfides for lithium-sulfur batteries. Small 2018, 14, 1701986.CrossRefGoogle Scholar
  29. [29]
    Ma, L. B.; Chen, R. P.; Zhu, G. Y.; Hu, Y.; Wang, Y. R.; Chen, T.; Liu, J; Jin, Z. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogenrich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 2017, 11, 7274–7283.CrossRefGoogle Scholar
  30. [30]
    Wang, H. Q.; Zhang, W. C.; Xu, J. Z.; Guo, Z. P. Advances in polar materials for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.CrossRefGoogle Scholar
  31. [31]
    Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.CrossRefGoogle Scholar
  32. [32]
    Xu, Y. Y.; Duan, S. B.; Li, H. Y.; Yang, M.; Wang, S. J.; Wang, X.; Wang, R. M. Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst. Nano Res. 2017, 10, 3103–3112.CrossRefGoogle Scholar
  33. [33]
    Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.CrossRefGoogle Scholar
  34. [34]
    Ji, P. H.; Shang, B.; Peng, Q. M.; Hu, X. B.; Wei, J. W. α-MoO3 spheres as effective polysulfides adsorbent for high sulfur content cathode in lithium-sulfur batteries. J. Power Sources 2018, 400, 572–579.CrossRefGoogle Scholar
  35. [35]
    Balamurugan, J.; Thanh, T. D.; Kim, N. H.; Lee, J. H. Facile synthesis of 3D hierarchical N-doped graphene nanosheet/cobalt encapsulated carbon nanotubes for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9555–9565.CrossRefGoogle Scholar
  36. [36]
    Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.CrossRefGoogle Scholar
  37. [37]
    Xu, Z. L.; Lin, S. H.; Onofrio, N.; Zhou, L. M.; Shi, F. Y.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S. P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164.CrossRefGoogle Scholar
  38. [38]
    He, B.; Li, W. C.; Zhang, Y.; Yu, X. F.; Zhang, B. S.; Li, F.; Lu, A. H. Paragenesis BN/CNTs hybrid as a monoclinic sulfur host for high rate and ultra-long life lithium-sulfur battery. J. Mater. Chem. A 2018, 6, 24194–24200, DOI:  https://doi.org/10.1039/C8TA09564G.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiao-Fei Yu
    • 1
  • Dong-Xu Tian
    • 1
  • Wen-Cui Li
    • 1
  • Bin He
    • 1
  • Yu Zhang
    • 1
  • Zhi-Yuan Chen
    • 1
  • An-Hui Lu
    • 1
    Email author
  1. 1.State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations