Advertisement

gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction

  • Lifu Zhang
  • Wanghui Zhao
  • Wenhua ZhangEmail author
  • Jing Chen
  • Zhenpeng HuEmail author
Research Article
  • 116 Downloads

Abstract

The electrochemical reduction of nitrogen to ammonia is a promising way to produce ammonia at mild condition. The design and preparation of an efficient catalyst with high ammonia selectivity is critical for the real applications. In this work, a series of transition metal (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd) atoms supported by gt-C3N4 (TM/gt-C3N4) are investigated as electrocatalysts for the nitrogen reduction reaction (NRR) based on density functional calculations. It is found that Mo/gt-C3N4 with a limiting potential of -0.82 V is the best catalyst for standing-on adsorbed N2 cases. While for lying-on adsorbed N2 cases, V/gt-C3N4 with a limiting potential of -0.79 V is better than other materials. It is believed that this work provides several promising candidates for the non-noble metal electrocatalysts for NRR at mild condition.

Keywords

nitrogen reduction reaction single-atom catalyst first-principles calculation Gibbs free energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21773124 and 21473167), the Fundamental Research Funds for the Central Universities (No. WK3430000005), the Fok Ying Tung Education Foundation (No. 151008), and partially by the support of China Scholarship Council (CSC) (File No. 201706345015). The calculations were performed on the super-computing system in USTC-SCC, Tianjin-SCC and Guangzhou-SCC.

Supplementary material

12274_2019_2378_MOESM1_ESM.pdf (2.8 mb)
Supplementary material, approximately 228 KB.

References

  1. [1]
    Smil, V. Detonator of the population explosion. Nature 1999, 400, 415.CrossRefGoogle Scholar
  2. [2]
    Anantharaman, B.; Hazarika, S.; Ahmad, T.; Nagvekar, M.; Ariyapadi, S.; Gualy, R. Coal gasification technology for ammonia plants. In Proceedings of the Nitrogen & Syngas 2012 Conference, Houston, TX, USA, 2012, pp 1–10.Google Scholar
  3. [3]
    Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.CrossRefGoogle Scholar
  4. [4]
    Back, S.; Jung, Y. On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys. Chem. Chem. Phys. 2016, 18, 9161–9166.CrossRefGoogle Scholar
  5. [5]
    Burgess, B. K.; Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 1996, 96, 2983–3012.CrossRefGoogle Scholar
  6. [6]
    Jacobsen, C. J. H.; Dahl, S.; Hansen, P. L.; Törnqvist, E.; Jensen, L.; Topsøe, H.; Prip, D. V.; Møenshaug, P. B.; Chorkendorff, I. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J. Mol. Catal. A-Chem. 2000, 163, 19–26.CrossRefGoogle Scholar
  7. [7]
    Ertl, G. Primary steps in catalytic synthesis of ammonia. J. Vac. Sci. Technol. A 1983, 1, 1247–1253.CrossRefGoogle Scholar
  8. [8]
    Aparicio, L. M.; Dumesic, J. A. Ammonia synthesis kinetics: Surface chemistry, rate expressions, and kinetic analysis. Top. Catal. 1994, 1, 233–252.CrossRefGoogle Scholar
  9. [9]
    Boudart, M. Ammonia synthesis: The bellwether reaction in heterogeneous catalysis. Top. Catal. 1994, 1, 405–414.CrossRefGoogle Scholar
  10. [10]
    Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.CrossRefGoogle Scholar
  11. [11]
    Kamiya, K.; Tatebe, T.; Yamamura, S.; Iwase, K.; Harada, T.; Nakanishi, S. Selective reduction of nitrate by a local cell catalyst composed of metal-doped covalent triazine frameworks. ACS Catal. 2018, 8, 2693–2698.CrossRefGoogle Scholar
  12. [12]
    Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO Hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.CrossRefGoogle Scholar
  13. [13]
    Zhang, Y.; Qiu, W. B.; Ma, Y. J.; Luo, Y. L.; Tian, Z. Q.; Cui, G. W.; Xie, F. Y.; Chen, L.; Li, T. S.; Sun, X. P. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540–8544.CrossRefGoogle Scholar
  14. [14]
    Wang, L.; Xia, M. K.; Wang, H.; Huang, K. F.; Qian, C. X.; Maravelias, C. T.; Ozin, G. A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074.CrossRefGoogle Scholar
  15. [15]
    Nazemi, M.; Panikkanvalappil, S. R.; El-Sayed M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 2018, 49, 316–323.CrossRefGoogle Scholar
  16. [16]
    Zhang, L.; Ji, X. Q.; Ren, X.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions. ACS Sustainable Chem. Eng. 2018, 6, 9550–9554.CrossRefGoogle Scholar
  17. [17]
    Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Morris Bullock, R.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, 873.Google Scholar
  18. [18]
    Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 1999, 83, 1814–1817.CrossRefGoogle Scholar
  19. [19]
    Dahl, S.; Törnqvist, E.; Chorkendorff, I. Dissociative adsorption of N2 on Ru(0001): A surface reaction totally dominated by steps. J. Catal. 2000, 192, 381–390.CrossRefGoogle Scholar
  20. [20]
    Murakami, T.; Nishikiori, T.; Nohira, T.; Ito, Y. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J. Am. Chem. Soc. 2003, 125, 334–335.CrossRefGoogle Scholar
  21. [21]
    Dahl, S.; Sehested, J.; Jacobsen, C. J. H.; Törnqvist, E.; Chorkendorff, I. Surface science based microkinetic analysis of ammonia synthesis over ruthenium catalysts. J. Catal. 2000, 192, 391–399.CrossRefGoogle Scholar
  22. [22]
    Kojima, R.; Aika, K. I. Molybdenum nitride and carbide catalysts for ammonia synthesis. Appl. Catal. A-Gen. 2001, 219, 141–147.CrossRefGoogle Scholar
  23. [23]
    Rod, T. H.; Logadottir, A.; Nørskov, J. K. Ammonia synthesis at low temperatures. J. Chem. Phys. 2000, 112, 5343–5347.CrossRefGoogle Scholar
  24. [24]
    Hinnemann, B.; Nørskov, J. K. Modeling a central ligand in the nitrogenase FeMo cofactor. J. Am. Chem. Soc. 2003, 125, 1466–1467.CrossRefGoogle Scholar
  25. [25]
    Logadottir, A.; Rod, T. H.; Nørskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. H. The Brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 2001, 197, 229–231.CrossRefGoogle Scholar
  26. [26]
    Logadóttir, Á.; Nørskov, J. K. Ammonia synthesis over a Ru(0001) surface studied by density functional calculations. J. Catal. 2003, 220, 273–279.CrossRefGoogle Scholar
  27. [27]
    Hellman, A.; Honkala, K.; Remediakis, I. N.; Logadóttir, Á.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles. Surf. Sci. 2009, 603, 1731–1739.CrossRefGoogle Scholar
  28. [28]
    Hellman, A.; Baerends, E. J.; Biczysko, M.; Bligaard, T.; Christensen, C. H.; Clary, D. C.; Dahl, S.; Van Harrevelt, R.; Honkala, K.; Jónsson, H. et al. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. J. Phys. Chem. B 2006, 110, 17719–17735.CrossRefGoogle Scholar
  29. [29]
    Liu, C. W.; Li, Q. Y.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Theoretical evaluation of possible 2D boron monolayer in N2 electrochemical conversion into ammonia. J. Phys. Chem. C 2018, 122, 25268–25273.CrossRefGoogle Scholar
  30. [30]
    Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.CrossRefGoogle Scholar
  31. [31]
    Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.CrossRefGoogle Scholar
  32. [32]
    Ling, C. Y.; Ouyang, Y. X.; Li, Q.; Bai, X. W.; Mao, X.; Du, A. J.; Wang, J. L. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 2018, 1800376, DOI:  https://doi.org/10.1002/smtd.201800376.Google Scholar
  33. [33]
    Ling, C. Y.; Bai, X. W.; Ouyang, Y. X.; Du, A. J.; Wang, J. L. Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 2018, 122, 16842–16847.CrossRefGoogle Scholar
  34. [34]
    Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.CrossRefGoogle Scholar
  35. [35]
    Liang, S. X.; Hao, C.; Shi, Y. T. The power of single-atom catalysis. ChemCatChem 2015, 7, 2559–2567.CrossRefGoogle Scholar
  36. [36]
    Li, X. F.; Li, Q. K.; Cheng, J.; Liu, L. L.; Yan, Q.; Wu, Y. C.; Zhang, X. H.; Wang, Z. Y.; Qiu, Q.; Luo, Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016, 138, 8706–8709.CrossRefGoogle Scholar
  37. [37]
    Le, Y. Q.; Gu, J.; Tian, W. Q. Nitrogen-fixation catalyst based on graphene: Every part counts. Chem. Commun. 2014, 50, 13319–13322.CrossRefGoogle Scholar
  38. [38]
    Dong, G. P.; Zhang, Y. H.; Pan, Q. W.; Qiu, J. R. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C-Photochem. Rev. 2014, 20, 33–50.CrossRefGoogle Scholar
  39. [39]
    Ghosh, D.; Periyasamy, G.; Pandey, B.; Pati, S. K. Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets. J. Mater. Chem. C 2014, 2, 7943–7951.CrossRefGoogle Scholar
  40. [40]
    Gao, D. Q.; Xu, Q.; Zhang, J.; Yang, Z. L.; Si, M. S.; Yan, Z. J.; Xue, D. S. Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets. Nanoscale 2014, 6, 2577–2581.CrossRefGoogle Scholar
  41. [41]
    Xu, K.; Li, X. L.; Chen, P. Z.; Zhou, D.; Wu, C. Z.; Guo, Y. Q.; Zhang, L. D; Zhao, J. Y.; Wu, X. J.; Xie, Y. Hydrogen dangling bonds induce ferromagnetism in two-dimensional metal-free graphitic-C3N4 nanosheets. Chem. Sci. 2015, 6, 283–287.CrossRefGoogle Scholar
  42. [42]
    Choudhuri, I.; Bhattacharyya, G.; Kumar, S.; Pathak, B. Metal-free halfmetallicity in a high energy phase C-doped gh-C3N4 system: A high Curie temperature planar system. J. Mater. Chem. C 2016, 4, 11530–11539.CrossRefGoogle Scholar
  43. [43]
    Zhang, Y.; Wang, Z.; Cao, J. X. Prediction of magnetic anisotropy of 5d transition metal-doped g-C3N4. J. Mater. Chem. C 2014, 2, 8817–8821.CrossRefGoogle Scholar
  44. [44]
    Ghosh, D.; Periyasamy, G.; Pati, S. K. Transition metal embedded two-dimensional C3N4-graphene nanocomposite: A multifunctional material. J. Phys. Chem. C 2014, 118, 15487–15494.CrossRefGoogle Scholar
  45. [45]
    Singh, A. R.; Montoya, J. H.; Rohr, B. A.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. Computational design of active site structures with improved transition-state scaling for ammonia synthesis. ACS Catal. 2018, 8, 4017–4024.CrossRefGoogle Scholar
  46. [46]
    Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.CrossRefGoogle Scholar
  47. [47]
    Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180–2186.CrossRefGoogle Scholar
  48. [48]
    Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.CrossRefGoogle Scholar
  49. [49]
    Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3D transition metals. J. Chem. Phys. 2004, 120, 10240–10246.CrossRefGoogle Scholar
  50. [50]
    Bond, G. C. Catalysis by Metals; Academic Press: London, 1962.Google Scholar
  51. [51]
    Ozaki, A.; Aika, K. Catalytic activation of dinitrogen. In Catalysis-Science and Technology. Anderson, J. R.; Boudart, M., Eds.; Springer-Verlag: Berlin, 1981; pp 87–158.Google Scholar
  52. [52]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  53. [53]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  54. [54]
    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.CrossRefGoogle Scholar
  55. [55]
    Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.CrossRefGoogle Scholar
  56. [56]
    Vegge, T.; Rasmussen, T.; Leffers, T.; Pedersen, O. B.; Jacobsen, K. W. Atomistic simulations of cross-slip of jogged screw dislocations in copper. Philos. Mag. Lett. 2001, 81, 137–144.CrossRefGoogle Scholar
  57. [57]
    Howalt, J. G.; Bligaard, T.; Rossmeisl, J.; Vegge, T. DFT based study of transition metal nano-clusters for electrochemical NH3 production. Phys. Chem. Chem. Phys. 2013, 15, 7785–7795.CrossRefGoogle Scholar
  58. [58]
    Computational Chemistry Comparison and Benchmark Database. https://doi.org/cccbdb.nist.gov/.
  59. [59]
    Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.CrossRefGoogle Scholar
  60. [60]
    Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.CrossRefGoogle Scholar
  61. [61]
    Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsNankai UniversityTianjinChina
  2. 2.Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information & Quantum PhysicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina

Personalised recommendations