Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment

  • Di Zu
  • Haiyang Wang
  • Sen Lin
  • Gang Ou
  • Hehe Wei
  • Shuqing SunEmail author
  • Hui WuEmail author
Review Article


Oxygen vacancies implantation is an efficient way to adjust the physical and chemical properties of metal oxide nanomaterials to meet the requirements for particular applications. Through reasonable defects design, oxygen-deficient metal oxides with excellent optical and electrical properties are widely applied for environmental protection and energy uses. This review discusses recent advances in synthetic approaches of oxygen-deficient metal oxides and their applications in photocatalysis, electrocatalysis, and energy storage devices. The perspectives of oxygen-deficient metal oxides for increased energy demand and environmental sustainability are also examined.


oxygen vacancies metal oxides synthesis routes energy and environment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the National Basic Research of China (No. 2015CB932500), and National Natural Science Foundations of China (Nos. 51788104, 51661135025 and 51522207). S. S. thanks financial support from Innovation Foundation for Science and Technology of Shenzhen (Nos. JCYJ20170307153548350 and JCYJ20170817172150505).


  1. [1]
    Tiba, S.; Omri, A. Literature survey on the relationships between energy, environment and economic growth. Renew. Sust. Energ. Rev. 2017, 69, 1129–1146.CrossRefGoogle Scholar
  2. [2]
    Zhao, X.; Luo, D. K. Driving force of rising renewable energy in China: Environment, regulation and employment. Renew. Sust. Energ. Rev. 2017, 68, 48–56.CrossRefGoogle Scholar
  3. [3]
    Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.CrossRefGoogle Scholar
  4. [4]
    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.CrossRefGoogle Scholar
  5. [5]
    Mallouk, T. E. Water electrolysis: Divide and conquer. Nat. Chem. 2013, 5, 362–363.CrossRefGoogle Scholar
  6. [6]
    Nong, S. Y.; Dong, W. J.; Yin, J. W.; Dong, B. W.; Lu, Y.; Yuan, X. T.; Wang, X.; Bu, K. J.; Chen, M. Y.; Jiang, S. D. et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 5719–5727.CrossRefGoogle Scholar
  7. [7]
    You, J. B.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y.; Chang, W. H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81.CrossRefGoogle Scholar
  8. [8]
    Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.CrossRefGoogle Scholar
  9. [9]
    Dou, Y. Y.; Wu, F.; Mao, C. Y.; Fang, L.; Guo, S. C.; Zhou, M. Enhanced photovoltaic performance of ZnO nanorod-based dye-sensitized solar cells by using Ga doped ZnO seed layer. J. Alloys Compd. 2015, 633, 408–414.CrossRefGoogle Scholar
  10. [10]
    Tao, Y.; Zhu, Y. M.; Liu, C. J.; Yue, H. R.; Ji, J. Y.; Yuan, S. J.; Jiang, W.; Liang, B. A highly selective Cr/ZrO2 catalyst for the reverse water-gas shift reaction prepared from simulated Cr-containing wastewater by a photocatalytic deposition process with ZrO2. J. Environ. Chem. Eng. 2018, 6, 6761–6770.CrossRefGoogle Scholar
  11. [11]
    Khraisheh, M.; Khazndar, A.; Al-Ghouti, M. A. Visible light-driven metal-oxide photocatalytic CO2 conversion. Int. J. Energy Res. 2015, 39, 1142–1152.CrossRefGoogle Scholar
  12. [12]
    Li, L. H.; Deng, Z. X.; Xiao, J. X.; Yang, G. W. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity. Nanotechnology 2015, 26, 255705.CrossRefGoogle Scholar
  13. [13]
    He, J.; Zhang, P. P.; Liu, X. T.; Wu, S. S.; Hu, L. F.; Xu, L. Structural characteristics and spectral response of composite transition metal oxide photocatalytic materials. J Mater Sci 2016, 51, 7049–7072.CrossRefGoogle Scholar
  14. [14]
    Jeong, G.; Kim, J. G.; Park, M. S.; Seo, M.; Hwang, S. M.; Kim, Y. U.; Kim, Y. J.; Kim, J. H.; Dou, S. X. Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 2014, 8, 2977–2985.CrossRefGoogle Scholar
  15. [15]
    Xing, M. Y.; Zhang, J. L.; Qiu, B. C.; Tian, B. Z.; Anpo, M.; Che, M. A brown mesoporous TiO2-x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 2015, 11, 1920–1929.CrossRefGoogle Scholar
  16. [16]
    Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem., Int. Ed. 2007, 46, 750–753.CrossRefGoogle Scholar
  17. [17]
    Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.CrossRefGoogle Scholar
  18. [18]
    Xiao, X.; Peng, Z. H.; Chen, C.; Zhang, C. F.; Beidaghi, M.; Yang, Z. H.; Wu, N.; Huang, Y. H.; Miao, L.; Gogotsi, Y. et al. Freestanding MoO3-x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 2014, 9, 355–363.CrossRefGoogle Scholar
  19. [19]
    Li, L.; Raji, A. R. O.; Tour, J. M. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv. Mater. 2013, 25, 6298–6302.CrossRefGoogle Scholar
  20. [20]
    Wang, N. N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-Ion and Li-Ion batteries. Adv. Mater. 2016, 28, 4126–4133.CrossRefGoogle Scholar
  21. [21]
    Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeisser, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530–17536.CrossRefGoogle Scholar
  22. [22]
    Liu, H. Z.; Xia, G. L.; Zhang, R. R.; Jiang, P.; Chen, J. T.; Chen, Q. W. MOF-derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Adv. 2017, 7, 3686–3694.CrossRefGoogle Scholar
  23. [23]
    Anantharaj, S.; Karthik, P. E.; Kundu, S. Self-assembled IrO2 nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities. J. Mater. Chem. A 2015, 3, 24463–24478.CrossRefGoogle Scholar
  24. [24]
    Ye, Z. G.; Li, T.; Ma, G.; Dong, Y. H.; Zhou, X. L. Metal-Ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1704083.CrossRefGoogle Scholar
  25. [25]
    Dong, H. Y.; Tang, P. P.; Zhang, S. Q.; Xiao, X. L.; Jin, C.; Gao, Y. C.; Yin, Y. H.; Li, B.; Yang, S. T. Excellent oxygen evolution reaction of NiO with a layered nanosphere structure as the cathode of lithium-oxygen batteries. RSC Adv. 2018, 8, 3357–3363.CrossRefGoogle Scholar
  26. [26]
    Zhou, L. S.; Deng, B. L.; Jiang, Z. Q.; Jiang, Z. J. Shell thickness controlled core-shell Fe3O4@CoO nanocrystals as efficient bifunctional catalysts for the oxygen reduction and evolution reactions. Chem. Commun. 2019, 55, 525–528.CrossRefGoogle Scholar
  27. [27]
    Liotta, L. F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B: Environ. 2010, 100, 403–412.CrossRefGoogle Scholar
  28. [28]
    Zhang, Z. X.; Jiang, Z.; Shangguan, W. F. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal. Today 2016, 264, 270–278.CrossRefGoogle Scholar
  29. [29]
    Liu, B.; Liu, J.; Ma, S. C.; Zhao, Z.; Chen, Y.; Gong, X. Q.; Song, W. Y.; Duan, A. J.; Jiang, G. Y. Mechanistic study of selective catalytic reduction of NO with NH3 on W-doped CeO2 catalysts: Unraveling the catalytic cycle and the role of oxygen vacancy. J. Phys. Chem. C 2016, 120, 2271–2283.CrossRefGoogle Scholar
  30. [30]
    Yu, C. P.; Wang, Y.; Zheng, H. M.; Zhang, J. F.; Yang, W. F.; Shu, X.; Qin, Y. Q.; Cui, J. W.; Zhang, Y.; Wu, Y. C. Supercapacitive performance of homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies. J. Solid State Electr. 2017, 21, 1069–1078.CrossRefGoogle Scholar
  31. [31]
    Zhang, Y. J.; Sun, C. T.; Lu, P.; Li, K. Y.; Song, S. Y.; Xue, D. F. Crystallization design of MnO2 towards better supercapacitance. CrystEngComm 2012, 14, 5892–5897.CrossRefGoogle Scholar
  32. [32]
    Arciga-Duran, E.; Meas, Y.; Pérez-Bueno, J. J.; Ballesteros, J. C.; Trejo, G. Effect of oxygen vacancies in electrodeposited NiO towards the oxygen evolution reaction: Role of Ni-Glycine complexes. Electrochim. Acta 2018, 268, 49–58.CrossRefGoogle Scholar
  33. [33]
    Gruption, A. A. F.; Lassali, T. A. F. Effect of the Co3O4 introduction in the pseudocapacitive behavior of IrO2-based electrode. J. Electrochem. Soc. 2001, 148, A1015–A1022.CrossRefGoogle Scholar
  34. [34]
    Dahlman, C. J.; Tan, Y. Z.; Marcus, M. A.; Milliron, D. J. Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J. Am. Chem. Soc. 2015, 137, 9160–9166.CrossRefGoogle Scholar
  35. [35]
    Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 2017, 16, 454–460.CrossRefGoogle Scholar
  36. [36]
    Han, X. X.; Huang, J.; Jing, X. X.; Yang, D. Y.; Lin, H.; Wang, Z. G.; Li, P.; Chen, Y. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. ACS Nano 2018, 12, 4545–4555.CrossRefGoogle Scholar
  37. [37]
    Lin, Z. D.; Li, N.; Chen, Z.; Fu, P. The effect of Ni doping concentration on the gas sensing properties of Ni doped SnO2. Sens. Actuators B Chem. 2017, 239, 501–510.CrossRefGoogle Scholar
  38. [38]
    Shao, W.; Wang, H.; Zhang, X. D. Elemental doping for optimizing photocatalysis in semiconductors. Dalton Trans. 2018, 47, 12642–12646.CrossRefGoogle Scholar
  39. [39]
    Wang, J.; Chen, R. S.; Xiang, L.; Komarneni, S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018, 44, 7357–7377.CrossRefGoogle Scholar
  40. [40]
    Sarkar, A.; Khan, G. G. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale 2019, 11, 3414–3444.CrossRefGoogle Scholar
  41. [41]
    Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.CrossRefGoogle Scholar
  42. [42]
    Wang, B.; Shen, S. H.; Mao, S. S. Black TiO2 for solar hydrogen conversion. J. Mater. 2017, 3, 96–111.Google Scholar
  43. [43]
    Lu, Q. L.; Zhao, S. X.; Chen, C. K.; Wang, X.; Deng, Y. F.; Nan, C. W. A novel pseudocapacitance mechanism of elm seed-like mesoporous MoO3-x nanosheets as electrodes for supercapacitors. J. Mater. Chem. A 2016, 4, 14560–14566.CrossRefGoogle Scholar
  44. [44]
    Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.CrossRefGoogle Scholar
  45. [45]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.CrossRefGoogle Scholar
  46. [46]
    Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.CrossRefGoogle Scholar
  47. [47]
    Liu, Y. Y.; Wang, H. T.; Lin, D. C.; Liu, C.; Hsu, P. C.; Liu, W.; Chen, W.; Cui, Y. Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts. Energy Environ. Sci. 2015, 8, 1719–1724.CrossRefGoogle Scholar
  48. [48]
    Zhu, Y. L.; Zhou, W.; Yu, J.; Chen, Y. B.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691–1697.CrossRefGoogle Scholar
  49. [49]
    Zhai, T.; Xie, S. L.; Yu, M. H.; Fang, P. P.; Liang, C. L.; Lu, X. H.; Tong, Y. X. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 2014, 8, 255–263.CrossRefGoogle Scholar
  50. [50]
    Chen, S. Q.; Li, L. P.; Hu, W. B.; Huang, X. S.; Li, Q.; Xu, Y. S.; Zuo, Y.; Li, G. S. Anchoring high-concentration oxygen vacancies at interfaces of CeO2-x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl. Mater. Interfaces 2015, 7, 22999–23007.CrossRefGoogle Scholar
  51. [51]
    Yuan, K. P.; Cao, Q.; Lu, H. L.; Zhong, M.; Zheng, X. Z.; Chen, H. Y.; Wang, T.; Delaunay, J. J.; Luo, W.; Zhang, L. W. et al. Oxygen-deficient WO3-x@TiO2-x core-shell nanosheets for efficient photoelectrochemical oxidation of neutral water solutions. J. Mater. Chem. A 2017, 5, 14697–14706.CrossRefGoogle Scholar
  52. [52]
    Su, T.; Yang, Y. L.; Na, Y.; Fan, R. Q.; Li, L.; Wei, L. G.; Yang, B.; Cao, W. W. An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 3754–3763.CrossRefGoogle Scholar
  53. [53]
    Wang, N. N.; Yue, J.; Chen, L.; Qian, Y. T.; Yang, J. Hydrogenated TiO2 branches coated Mn3O4 nanorods as an advanced anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 10348–10355.CrossRefGoogle Scholar
  54. [54]
    Wang, G. M.; Ling, Y. C.; Wang, H. Y.; Yang, X. Y.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 2012, 5, 6180–6187.CrossRefGoogle Scholar
  55. [55]
    Zhang, C. Y.; Xie, Y. H.; Ma, J. H.; Hu, J.; Zhang, C. C. A composite catalyst of reduced black TiO2-x/CNT: A highly efficient counter electrode for ZnO-based dye-sensitized solar cells. Chem. Commun. 2015, 51, 17459–17462.CrossRefGoogle Scholar
  56. [56]
    Xu, Q. C.; Jiang, H.; Zhang, H. X.; Jiang, H. B.; Li, C. Z. Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction. Electrochim. Acta 2018, 259, 962–967.CrossRefGoogle Scholar
  57. [57]
    Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.CrossRefGoogle Scholar
  58. [58]
    Zhang, K.; Wang, L. Y.; Kim, J. K.; Ma, M.; Veerappan, G.; Lee, C. L.; Kong, K. J.; Lee, H.; Park, J. H. An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy Environ. Sci. 2016, 9, 499–503.CrossRefGoogle Scholar
  59. [59]
    Sinhamahapatra, A.; Jeon, J. P.; Yu, J. S. A new approach to prepare highly active and stable black Titania for visible light-assisted hydrogen production. Energy Environ. Sci 2015, 8, 3539–3544.CrossRefGoogle Scholar
  60. [60]
    Sinhamahapatra, A.; Jeon, J. P.; Kang, J.; Han, B.; Yu, J. S. Oxygen-deficient zirconia (ZrO2-x): A new material for solar light absorption. Sci. Rep. 2016, 6, 27218.CrossRefGoogle Scholar
  61. [61]
    Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan, D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M. et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci 2013, 6, 3007–3014.CrossRefGoogle Scholar
  62. [62]
    Zhao, W. L.; Zhao, W.; Zhu, G. L.; Lin, T. Q.; Xu, F. F.; Huang, F. Q. Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. Dalton Trans. 2016, 45, 3888–3894.CrossRefGoogle Scholar
  63. [63]
    Zhao, Z.; Tan, H. Q.; Zhao, H. F.; Lv, Y.; Zhou, L. J.; Song, Y. J.; Sun, Z. C. Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 2014, 50, 2755–2757.CrossRefGoogle Scholar
  64. [64]
    Han, D.; Jiang, B. L.; Feng, J.; Yin, Y. D.; Wang, W. S. Photocatalytic self-doped SnO2-x nanocrystals drive visible-light-responsive color switching. Angew. Chem., Int. Ed. 2017, 56, 7792–7796.CrossRefGoogle Scholar
  65. [65]
    Chen, H. H.; Yang, M.; Tao, S.; Chen, G. W. Oxygen vacancy enhanced catalytic activity of reduced Co3O4 towards p-nitrophenol reduction. Appl. Catal. B: Environ. 2017, 209, 648–656.CrossRefGoogle Scholar
  66. [66]
    Sun, H. Y.; Zhao, Y. Y.; Molhave, K.; Zhang, M. W.; Zhang, J. D. Simultaneous modulation of surface composition, oxygen vacancies and assembly in hierarchical Co3O4 mesoporous nanostructures for lithium storage and electrocatalytic oxygen evolution. Nanoscale 2017, 9, 14431–14441.CrossRefGoogle Scholar
  67. [67]
    Xiang, K.; Xu, Z. C.; Qu, T. T.; Tian, Z. F.; Zhang, Y.; Wang, Y. Z.; Xie, M. J.; Guo, X. K.; Ding, W. P.; Guo, X. F. Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances. Chem. Commun. 2017, 53, 12410–12413.CrossRefGoogle Scholar
  68. [68]
    Wajid Shah, M.; Zhu, Y. Q.; Fan, X. Y.; Zhao, J.; Li, Y. X.; Asim, S.; Wang, C. Y. Facile synthesis of defective TiO2-x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis. Sci. Rep. 2015, 5, 15804.CrossRefGoogle Scholar
  69. [69]
    Zou, X. X.; Liu, J. K.; Su, J.; Zuo, F.; Chen, J. S.; Feng, P. Y. Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. Chem. -Eur. J. 2013, 19, 2866–2873.CrossRefGoogle Scholar
  70. [70]
    Tominaka, S.; Tsujimoto, Y.; Matsushita, Y.; Yamaura, K. Synthesis of nanostructured reduced titanium oxide: Crystal structure transformation maintaining nanomorphology. Angew. Chem., Int. Ed. 2011, 50, 7418–7421.CrossRefGoogle Scholar
  71. [71]
    Zhang, Z. H.; Hedhili, M. N.; Zhu, H. B.; Wang, P. Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys. Chem. Chem. Phys. 2013, 15, 15637–15644.CrossRefGoogle Scholar
  72. [72]
    Meekins, B. H.; Kamat, P. V. Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano 2009, 3, 3437–3446.CrossRefGoogle Scholar
  73. [73]
    Wang, G. M.; Yang, Y.; Ling, Y. C.; Wang, H. Y.; Lu, X. H.; Pu, Y. C.; Zhang, J. Z.; Tong, Y. X.; Li, Y. An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. J. Mater. Chem. A 2016, 4, 2849–2855.CrossRefGoogle Scholar
  74. [74]
    Lee, S.; Nam, G.; Sun, J.; Lee, J. S.; Lee, H. W.; Chen, W.; Cho, J.; Cui, Y. Enhanced intrinsic catalytic activity of λ-MnO2 by electrochemical tuning and oxygen vacancy generation. Angew. Chem., Int. Ed. 2016, 55, 8599–8604.CrossRefGoogle Scholar
  75. [75]
    Liu, N.; Häublein, V.; Zhou, X. M.; Venkatesan, U.; Hartmann, M.; Mačković, M.; Nakajima, T.; Spiecker, E.; Osvet, A.; Frey, L. et al. “Blacl” TiO2 nanotubes formed by high-energy proton implantation show noble-metalco-catalyst free photocatalytic H2-evolution. Nano Lett. 2015, 15, 6815–6820.CrossRefGoogle Scholar
  76. [76]
    Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.CrossRefGoogle Scholar
  77. [77]
    Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.CrossRefGoogle Scholar
  78. [78]
    Xu, J. J.; Dong, W. J.; Song, C. S.; Tang, Y. F.; Zhao, W. L.; Hong, Z. L.; Huang, F. Q. Black rutile (Sn, Ti)O2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage. J. Mater. Chem. A 2016, 4, 15698–15704.CrossRefGoogle Scholar
  79. [79]
    Zhou, Y.; Liu, Y. C.; Liu, P. W.; Zhang, W. Y.; Xing, M. Y.; Zhang, J. L. A facile approach to further improve the substitution of nitrogen into reduced TiO2-x with an enhanced photocatalytic activity. Appl. Catal. B: Environ. 2015, 170, 66–73.CrossRefGoogle Scholar
  80. [80]
    Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P. MnO2-x nanosheets on stainless steel felt as a carbon-and binder-free cathode for non-aqueous lithium-oxygen batteries. J. Power Sources 2016, 306, 724–732.CrossRefGoogle Scholar
  81. [81]
    Fan, C. Y.; Chen, C.; Wang, J.; Fu, X. X.; Ren, Z. M.; Qian, G. D.; Wang, Z. Y. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci. Rep. 2015, 5, 11712.CrossRefGoogle Scholar
  82. [82]
    Ullattil, S. G.; Periyat, P. A “one pot” gel combustion strategy towards Ti3+ self-doped ‘black’ anatase TiO2-x solar photocatalyst. J. Mater. Chem. A 2016, 4, 5854–5858.CrossRefGoogle Scholar
  83. [83]
    Ou, G.; Li, D. K.; Pan, W.; Zhang, Q. H.; Xu, B.; Gu, L.; Nan, C. W.; Wu, H. Arc-melting to narrow the bandgap of oxide semiconductors. Adv. Mater. 2015, 27, 2589–2594.CrossRefGoogle Scholar
  84. [84]
    Wei, H. H.; Ma, X. G.; Gu, L.; Li, J. Q.; Si, W. J.; Ou, G.; Yu, W.; Zhao, C. S.; Li, J. Y.; Song, M. J. et al. Aerodynamic levitated laser annealing method to defective titanium dioxide with enhanced photocatalytic performance. Nano Res. 2016, 9, 3839–3847.CrossRefGoogle Scholar
  85. [85]
    Yu, W.; Ou, G.; Si, W. J.; Qi, L. H.; Wu, H. Defective SrTiO3 synthesized by arc-melting. Chem. Commun. 2015, 51, 15685–15688.CrossRefGoogle Scholar
  86. [86]
    Wang, J.; Xia, Y.; Zhao, H. Y.; Wang, G. F.; Xiang, L.; Xu, J. L.; Komarneni, S. Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl. Catal. B: Environ. 2017, 206, 406–416.CrossRefGoogle Scholar
  87. [87]
    Li, M. Y.; Hu, Y.; Xie, S. L.; Huang, Y. C.; Tong, Y. X.; Lu, X. H. Heterostructured ZnO/SnO2-x nanoparticles for efficient photocatalytic hydrogen production. Chem. Commun. 2014, 50, 4341–4343.CrossRefGoogle Scholar
  88. [88]
    Zhang, J. Q.; Xing, Z. P.; Cui, J. Y.; Li, Z. Z.; Tan, S. Y.; Yin, J. W.; Zou, J. L.; Zhu, Q.; Zhou, W. C,N co-doped porous TiO2 hollow sphere visible light photocatalysts for efficient removal of highly toxic phenolic pollutants. Dalton Trans. 2018, 47, 4877–4884.CrossRefGoogle Scholar
  89. [89]
    Li, G. S.; Lian, Z. C.; Li, X.; Xu, Y. Y.; Wang, W. C.; Zhang, D. Q.; Tian, F. H.; Li, H. X. Ionothermal synthesis of black Ti3+-doped single-crystal TiO2 as an active photocatalyst for pollutant degradation and H2 generation. J. Mater. Chem. A 2015, 3, 3748–3756.CrossRefGoogle Scholar
  90. [90]
    He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Solar Energy Mater. Solar Cells 2015, 137, 175–184.CrossRefGoogle Scholar
  91. [91]
    Xing, M. Y.; Zhou, Y.; Dong, C. Y.; Cai, L. J.; Zeng, L. X.; Shen, B.; Pan, L. H.; Dong, C. C.; Chai, Y.; Zhang, J. L. et al. Modulation of the reduction potential of TiO2-x by fluorination for efficient and selective CH4 generation from CO2 photoreduction. Nano Lett. 2018, 18, 3384–3390.CrossRefGoogle Scholar
  92. [92]
    Yin, G. H.; Huang, X. Y.; Chen, T. Y.; Zhao, W.; Bi, Q. Y.; Xu, J.; Han, Y. F.; Huang, F. Q. Hydrogenated blue titania for efficient solar to chemical conversions: Preparation, characterization, and reaction mechanism of CO2 reduction. ACS Catal. 2018, 8, 1009–1017.CrossRefGoogle Scholar
  93. [93]
    Li, W. J.; Da, P. M.; Zhang, Y. Y.; Wang, Y. C.; Lin, X.; Gong, X. G.; Zheng, G. F. WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano 2014, 8, 11770–11777.CrossRefGoogle Scholar
  94. [94]
    Luo, Z.; Miao, R.; Huan, T. D.; Mosa, I. M.; Poyraz, A. S.; Zhong, W.; Cloud, J. E.; Kriz, D. A.; Thanneeru, S.; He, J. K. et al. Mesoporous MoO3-x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv. Energy Mater. 2016, 6, 1600528.CrossRefGoogle Scholar
  95. [95]
    Chen, J. D.; Yu, D. N.; Liao, W. S.; Zheng, M. D.; Xiao, L. F.; Zhu, H.; Zhang, M.; Du, M. L.; Yao, J. M. WO3-x Nanoplates grown on carbon nanofibers for an efficient electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 18132–18139.CrossRefGoogle Scholar
  96. [96]
    Li, L.; Zhang, T.; Yan, J. Q.; Cai, X. D.; Liu, S. Z. P doped MoO3-x nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small 2017, 13, 1700441.CrossRefGoogle Scholar
  97. [97]
    Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3-x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.CrossRefGoogle Scholar
  98. [98]
    Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474–2477.CrossRefGoogle Scholar
  99. [99]
    Li, L.; Feng, X. H.; Nie, Y.; Chen, S. G.; Shi, F.; Xiong, K.; Ding, W.; Qi, X. Q.; Hu, J. S.; Wei, Z. D. et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2. ACS Catal. 2015, 5, 4825–4832.CrossRefGoogle Scholar
  100. [100]
    Ma, D. T.; Li, Y. L.; Mi, H. W.; Luo, S.; Zhang, P. X.; Lin, Z. Q.; Li, J. Q.; Zhang, H. Robust SnO2-x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 8901–8905.CrossRefGoogle Scholar
  101. [101]
    Li, Y. F.; Wang, D. D.; An, Q. Y.; Ren, B.; Rong, Y. G.; Yao, Y. Flexible electrode for long-life rechargeable sodium-ion batteries: Effect of oxygen vacancy in MoO3-x. J. Mater. Chem. A 2016, 4, 5402–5405.CrossRefGoogle Scholar
  102. [102]
    Lim, S. P.; Pandikumar, A.; Lim, H. N.; Ramaraj, R.; Huang, N. M. Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N,S-Co-doped-TiO2 photoanode. Sci. Rep. 2015, 5, 11922.CrossRefGoogle Scholar
  103. [103]
    Elbohy, H.; Reza, K. M.; Abdulkarim, S.; Qiao, Q. Q. Creation of oxygen vacancies to activate WO3 for higher efficiency dye-sensitized solar cells. Sustainable Energy Fuels 2018, 2, 403–412.CrossRefGoogle Scholar
  104. [104]
    Zhou, H. W.; Shi, Y. T.; Wang, L.; Zhang, H.; Zhao, C. Y.; Hagfeldt, A.; Ma, T. L. Notable catalytic activity of oxygen-vacancy-rich WO2.72 nanorod bundles as counter electrodes for dye-sensitized solar cells. Chem. Commun. 2013, 49, 7626–7628.CrossRefGoogle Scholar
  105. [105]
    Yang, S. H.; Liu, Y. Y.; Hao, Y. F.; Yang, X. P.; Goddard III, W. A.; Zhang, X. L.; Cao, B. Q. Oxygen-Vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 2018, 5, 1700659.CrossRefGoogle Scholar
  106. [106]
    Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.CrossRefGoogle Scholar
  107. [107]
    Huang, S. Y.; Zhu, X. F.; Cheng, B.; Yu, J. G.; Jiang, C. J. Flexible nickel foam decorated with Pt/NiO nanoflakes with oxygen vacancies for enhanced catalytic formaldehyde oxidation at room temperature. Environ. Sci.: Nano 2017, 4, 2215–2224.Google Scholar
  108. [108]
    Wang, Z.; Wang, W. Z.; Zhang, L.; Jiang, D. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature. Catal. Sci. Technol. 2016, 6, 3845–3853.CrossRefGoogle Scholar
  109. [109]
    Nguyen, L.; Zhang, S. R.; Yoon, S. J.; Tao, F. Preferential oxidation of CO in H2 on pure Co3O4-x and Pt/Co3O4-x. ChemCatChem 2015, 7, 2346–2353.CrossRefGoogle Scholar
  110. [110]
    Liu, H. H.; Wang, Y.; Jia, A. P.; Wang, S. Y.; Luo, M. F.; Lu, J. Q. Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: A reaction at Pt-CeO2 interface. Appl. Surf. Sci. 2014, 314, 725–734.CrossRefGoogle Scholar
  111. [111]
    Wang, L.; Yu, Y. B.; He, H.; Zhang, Y.; Qin, X. B.; Wang, B. Y. Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation. Sci. Rep. 2017, 7, 12845.CrossRefGoogle Scholar
  112. [112]
    Lin, X. T.; Li, S. J.; He, H.; Wu, Z.; Wu, J. L.; Chen, L. M.; Ye, D. Q.; Fu, M. L. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Appl. Catal. B: Environ. 2018, 223, 91–102.CrossRefGoogle Scholar
  113. [113]
    Ma, C. J.; Wen, Y. Y.; Yue, Q. Q.; Li, A. Q.; Fu, J. L.; Zhang, N. W.; Gai, H. J.; Zheng, J. B.; Chen, B. H. Oxygen-vacancy-promoted catalytic wet air oxidation of phenol from MnOx-CeO2. RSC Adv. 2017, 7, 27079–27088.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  2. 2.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  3. 3.Department of PhysicsTsinghua UniversityBeijingChina

Personalised recommendations