Advertisement

Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors

  • Lingchang Wang
  • Chenguang ZhangEmail author
  • Xin Jiao
  • Zhihao YuanEmail author
Research Article
  • 77 Downloads

Abstract

In the development of wearable energy devices, polypyrrole (PPy) is considered as a promising electrode material owing to its high capacitance and good mechanical flexibility. Herein, we report a PPy-based hybrid structure consisting of vertical PPy nanotube arrays and carbon nano-onions (CNOs) grown on textile for wearable supercapacitors. In this hybrid nanostructure, the vertical PPy nanotubes provide straight and superhighways for electron and ion transport, boosting the energy storage; while the CNOs mainly act as a conductivity retainer for the underlayered PPy film during stretching. A facile template-degrading method is developed for the large-area growth of the PPy-based hybrid nanostructures on the textile through one-step polymerization process. The fabricated stretchable supercapacitor exhibits superior energy storage capacitance with the specific capacitance of 64 F·g−1. Also, it presents the high capacitance retention of 99% at a strain of 50% after 500 stretching cycles. Furthermore, we demonstrate that the textile-based stretchable supercapacitor device can provide a stable energy storage performance in different wearable situations for practical applications. The use of the PPy-based hybrid nanostructures as the supercapacitor electrode offers a novel structure design and a promising opportunity for wearable power supply in real applications.

Keywords

wearable supercapacitor polypyrrole nanotube carbon nano-onion template-degrading method stretchable electrode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the finance support by the National Natural Science Foundation of China (No. 51702233), the Natural Science Foundation of Tianjin City (No. 16JCYBJC41000) and support by Tianjin Key Subject for Materials Physics and Chemistry.

Supplementary material

12274_2019_2360_MOESM1_ESM.pdf (4.9 mb)
Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors

References

  1. [1]
    Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.CrossRefGoogle Scholar
  2. [2]
    Wang, H.; Li, F. S.; Zhu, B. W.; Guo, L.; Yang, Y.; Hao, R.; Wang, H.; Liu, Y. Q.; Wang, W.; Guo, X. T. et al. Flexible integrated electrical cables based on biocomposites for synchronous energy transmission and storage. Adv. Funct. Mater. 2016, 26, 3472–3479.CrossRefGoogle Scholar
  3. [3]
    Kim, R. H.; Bae, M. H.; Kim, D. G.; Cheng, H. Y.; Kim, B. H.; Kim, D. H.; Li, M.; Wu, J.; Du, F.; Kim, H. S. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 2011, 11, 3881–3886.CrossRefGoogle Scholar
  4. [4]
    Zhao, J. X.; Li, C. W.; Zhang, Q. C.; Zhang, J.; Wang, X. N.; Sun, J.; Wang, J. J.; Xie, J. X.; Lin, Z. Y.; Li, Z. et al. Hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays supported on graphene fibers as highperformance electrodes for flexible asymmetric supercapacitors. Nano Res. 2018, 11, 1775–1786.CrossRefGoogle Scholar
  5. [5]
    Wang, C. D.; Liu, D. B.; Chen, S. M.; Shang, Y. A.; Haleem, Y. A.; Wu, C. Q.; Xu, W. Y.; Fang, Q.; Habib, M.; Cao, J. et al. All-carbon ultrafast supercapacitor by integrating multidimensional nanocarbons. Small 2016, 12, 5684–5691.CrossRefGoogle Scholar
  6. [6]
    Kim, B. C.; Hong, J. Y.; Wallace, G. G.; Park, H. S. Recent progress in flexible electrochemical capacitors: Electrode materials, device configuration, and functions. Adv. Energy Mater. 2015, 5, 1500959.CrossRefGoogle Scholar
  7. [7]
    Jiao, X.; Zhang, C. G.; Yuan, Z. H. Facile and large-area preparation of polypyrrole film for low-haze transparent supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 41299–41311.CrossRefGoogle Scholar
  8. [8]
    Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. 2018, 11, 4313–4322.CrossRefGoogle Scholar
  9. [9]
    Huang, Y.; Tao, J. Y.; Meng, W. J.; Zhu, M. S.; Huang, Y.; Fu, Y. Q.; Gao, Y. H.; Zhi, C. Y. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525.CrossRefGoogle Scholar
  10. [10]
    Zhu, J.; Tang, S. C.; Wu, J.; Shi, X. L.; Zhu, B. G.; Meng, X. K. Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4-NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 2017, 7, 1601234.CrossRefGoogle Scholar
  11. [11]
    Bao, L. H.; Li, X. D. Towards textile energy storage from cotton T-shirts. Adv. Mater. 2012, 24, 3246–3252.CrossRefGoogle Scholar
  12. [12]
    Bao, Z. A.; Chen, X. D. Flexible and stretchable devices. Adv. Mater. 2016, 28, 4177–4179.CrossRefGoogle Scholar
  13. [13]
    Xue, Q.; Sun, J. F.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Y. K.; Li, N.; Zhang, H. Y.; Zhi, C. Y. Recent progress on flexible and wearable supercapacitors. Small 2017, 13, 1701827.CrossRefGoogle Scholar
  14. [14]
    Yang, Y.; Wang, H.; Hao, R.; Guo, L. Transition-metal-free biomoleculebased flexible asymmetric supercapacitors. Small 2016, 12, 4683–4689.CrossRefGoogle Scholar
  15. [15]
    Yue, B. B.; Wang, C. Y.; Ding, X.; Wallace, G. G. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim. Acta 2012, 68, 18–24.CrossRefGoogle Scholar
  16. [16]
    Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8, 1039–1046.CrossRefGoogle Scholar
  17. [17]
    Wang, X. L.; Hu, H.; Shen, Y. D.; Zhou, X. C.; Zheng, Z. J. Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms. Adv. Mater. 2011, 23, 3090–3094.CrossRefGoogle Scholar
  18. [18]
    Wang, S. Y.; Pei, B.; Zhao, X. S.; Dryfe, R. A. W. Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2013, 2, 530–536.CrossRefGoogle Scholar
  19. [19]
    Chen, B. L.; Jiang, Y. Z.; Tang, X. H.; Pan, Y. Y.; Hu, S. Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces 2017, 9, 28433–28440.CrossRefGoogle Scholar
  20. [20]
    Zhang, N.; Luan, P. S.; Zhou, W. Y.; Zhang, Q.; Cai, L.; Zhang, X.; Zhou, W. B.; Fan, Q. X.; Yang, F.; Zhao, D. et al. Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Res. 2014, 7, 1680–1690.CrossRefGoogle Scholar
  21. [21]
    Zhang, C. G.; Peng, Z. W.; Lin, J.; Zhu, Y.; Ruan, G. D.; Hwang, C. C.; Lu, W.; Hauge, R. H.; Tour, J. M. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors. ACS Nano 2013, 7, 5151–5159.CrossRefGoogle Scholar
  22. [22]
    Yamada, T.; Namai, T.; Hata, K.; Futaba, D. N.; Mizuno, K.; Fan, J.; Yudasaka, M.; Yumura, M.; Iijima, S. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat. Nanotechnol. 2006, 1, 131–136.CrossRefGoogle Scholar
  23. [23]
    Wang, K.; Wu, H. P.; Meng, Y. N.; Wei, Z. X. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10, 14–31.CrossRefGoogle Scholar
  24. [24]
    Ni, J. F.; Li, L. Self-supported 3D array electrodes for sodium microbatteries. Adv. Funct. Mater. 2018, 28, 1704880.CrossRefGoogle Scholar
  25. [25]
    Zhang, C. G.; Bets, K.; Lee, S. S.; Sun, Z. Z.; Mirri, F.; Colvin, V. L.; Yakobson, B. I.; Tour, J. M.; Hauge, R. H. Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes. ACS Nano 2012, 6, 6023–6032.CrossRefGoogle Scholar
  26. [26]
    Zhu, Y.; Li, L.; Zhang, C. G.; Casillas, G.; Sun, Z. Z.; Yan, Z.; Ruan, G. D.; Peng, Z. W.; Raji, A. R. O.; Kittrell, C. et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 2012, 3, 1225.CrossRefGoogle Scholar
  27. [27]
    Zhang, C. G.; Li, J. J.; Zeng, X. S.; Yuan, Z. H.; Zhao, N. Q. Graphene quantum dots derived from hollow carbon nano-onions. Nano Res. 2018, 11, 174–184.CrossRefGoogle Scholar
  28. [28]
    Zeiger, M.; Jäckel, N.; Mochalin, V. N.; Presser, V. Review: Carbon onions for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 3172–3196.CrossRefGoogle Scholar
  29. [29]
    Weingarth, D.; Zeiger, M.; Jäckel, N.; Aslan, M.; Feng, G.; Presser, V. Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors. Adv. Energy Mater. 2014, 4, 1400316.CrossRefGoogle Scholar
  30. [30]
    Zhang, C. G.; Li, J. J.; Liu, E. Z.; He, C. N.; Shi, C. S.; Du, X. W.; Hauge, R. H.; Zhao, N. Q. Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 2012, 50, 3513–3521.CrossRefGoogle Scholar
  31. [31]
    Yuan, L. Y.; Yao, B.; Hu, B.; Huo, K. F.; Chen, W.; Zhou, J. Polypyrrolecoated paper for flexible solid-state energy storage. Energy Environ. Sci. 2013, 6, 470–476.CrossRefGoogle Scholar
  32. [32]
    Mykhailiv, O.; Imierska, M.; Petelczyc, M.; Echegoyen, L.; Plonska-Brzezinska, M. E. Chemical versus electrochemical synthesis of carbon nano-onion/polypyrrole composites for supercapacitor electrodes. Chem.—Eur. J. 2015, 21, 5783–5793.CrossRefGoogle Scholar
  33. [33]
    Jeong, H. T.; Kim, Y. R.; Kim, B. C. Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes. J. Alloys Compd. 2017, 727, 721–727.CrossRefGoogle Scholar
  34. [34]
    Yang, X. M.; Zhu, Z. X.; Dai, T. Y.; Lu, Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Comm. 2005, 26, 1736–1740.CrossRefGoogle Scholar
  35. [35]
    Chen, J. C.; Wang, Y. M.; Cao, J. Y.; Liu, Y.; Zhou, Y.; Ouyang, J. H.; Jia, D. H. Facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film. ACS Appl. Mater. Interfaces 2017, 9, 19831–19842.CrossRefGoogle Scholar
  36. [36]
    Yang, C.; Zhang, L. L.; Hu, N. T.; Yang, Z.; Wei, H.; Wang, Y. Y.; Zhang, Y. F. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers. Appl. Surf. Sci. 2016, 387, 666–673.CrossRefGoogle Scholar
  37. [37]
    Yang, J.; Wang, H.; Yang, Y.; Wu, J. P.; Hu, P. F.; Guo, L. Pseudocapacitivedye- molecule-based high-performance flexible supercapacitors. Nanoscale 2017, 9, 9879–9885.CrossRefGoogle Scholar
  38. [38]
    Zhang, D.; Dong, Q. Q.; Wang, X.; Yan, W.; Deng, W.; Shi, L. Y. Preparation of a three-dimensional ordered macroporous carbon nanotube/polypyrrole composite for supercapacitors and diffusion modeling. J. Phys. Chem. C 2013, 117, 20446–20455.CrossRefGoogle Scholar
  39. [39]
    Song, L. F.; Zou, Y. J.; Zhang, H. T.; Xiang, C. L.; Chu, H. L.; Qiu, S. J.; Yan, E. H.; Xu, F.; Sun, L. X. High performance supercapacitor based on polypyrrole/melamine formaldehyde resin derived carbon material. Int. J. Electrochem. Sci. 2017, 12, 1014–1024.CrossRefGoogle Scholar
  40. [40]
    Morozan, A.; Jégou, P.; Campidelli, S.; Palacin, S.; Jousselme, B. Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction. Chem. Commun. 2012, 48, 4627–4629.CrossRefGoogle Scholar
  41. [41]
    Li, H. H.; Song, J.; Wang, L. L.; Feng, X. M.; Liu, R. Q.; Zeng, W. J.; Huang, Z. D.; Ma, Y. W.; Wang, L. H. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Nanoscale 2017, 9, 193–200.CrossRefGoogle Scholar
  42. [42]
    Sultana, I.; Rahman, M. M.; Wang, J. Z.; Wang, C. Y.; Wallace, G. G.; Liu, H. K. All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochim. Acta. 2012, 83, 209–215.CrossRefGoogle Scholar
  43. [43]
    Islam, N.; Warzywoda, J.; Fan, Z. Y. Edge-oriented graphene on carbon nanofiber for high-frequency supercapacitors. Nano-Micro Lett. 2018, 10, 9.CrossRefGoogle Scholar
  44. [44]
    Taberna, P. L.; Simon, P.; Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292–A300.CrossRefGoogle Scholar
  45. [45]
    Song, Y.; Liu, T. Y.; Xu, X. X.; Feng, D. Y.; Li, Y.; Liu, X. X. Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv. Funct. Mater. 2015, 25, 4626–4632.CrossRefGoogle Scholar
  46. [46]
    Kovalenko, I.; Bucknall, D. G.; Yushin, G. Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors. Adv. Funct. Mater. 2010, 20, 3979–3986.CrossRefGoogle Scholar
  47. [47]
    Huang, J. Y.; Wang, K.; Wei, Z. X. Conducting polymer nanowire arrays with enhanced electrochemical performance. J. Mater. Chem. 2010, 20, 1117–1121.CrossRefGoogle Scholar
  48. [48]
    Huang, T. Q.; Cai, S. Y.; Chen, H.; Jiang, Y. Q.; Wang, S. Y.; Gao, C. Continuous fabrication of the graphene-confined polypyrrole film for cycling stable supercapacitors. J. Mater. Chem. A 2017, 5, 8255–8260.CrossRefGoogle Scholar
  49. [49]
    Zhang, C. G.; Ma, K.; Zhao, N. Q.; Yuan, Z. H. A core–shell strategy for improving alloy catalyst activity for continual growth of hollow carbon onions. Cryst. Growth Des. 2018, 18, 7470–7480.CrossRefGoogle Scholar
  50. [50]
    Noked, M.; Liu, C. Y.; Hu, J. K.; Gregorczyk, K.; Rubloff, G. W.; Lee, S. B. Electrochemical thin layers in nanostructures for energy storage. Acc. Chem. Res. 2016, 49, 2336–2346.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.Tianjin Key Laboratory for Photoelectric Materials & DevicesTianjin University of TechnologyTianjinChina
  3. 3.Key Laboratory of Display Materials and Photoelectric Devices, Ministry of EducationTianjin University of TechnologyTianjinChina

Personalised recommendations