Advertisement

Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance

  • Xiaoshuai Wang
  • Chao Zhou
  • Run Shi
  • Qinqin Liu
  • Geoffrey I. N. Waterhouse
  • Lizhu Wu
  • Chen-Ho Tung
  • Tierui ZhangEmail author
Research Article
  • 76 Downloads

Abstract

A simple one-step thermal polymerization method was developed for synthesis of holey graphitic carbon nitride nanotubes, involving direct heating of mixtures of melamine and urea or melamine and cyanuric acid in specific mass ratios. Supramolecular structures formed between the precursor molecules guided nanotube formation. The porous and nanotubular structure of the nanotubes facilitated efficient charge carrier migration and separation, thereby enhancing photocatalytic H2 production in 20 vol.% lactic acid under visible light irradiation. Nanotubes synthesized using melamine and urea in a 1:10 mass ratio (denoted herein as CN-MU nanotubes) exhibited a photocatalytic hydrogen production rate of 1,073.6 μmol·h−1·g−1 with Pt as the cocatalyst, a rate of 4.7 and 3.1 times higher than traditional Pt/g-C3N4 photocatalysts prepared from graphitic carbon nitride (g-C3N4) obtained by direct thermal polymerization of melamine or urea, respectively. On the basis of their outstanding performance for photocatalytic H2 production, it is envisaged that the holey g-C3N4 nanotubes will find widespread uptake in other areas, including photocatalytic CO2 reduction, dye-sensitized solar cells and photoelectrochemical sensors.

Keywords

graphitic carbon nitride holey nanotubes photocatalysis visible-light response hydrogen evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2019_2357_MOESM1_ESM.pdf (4.6 mb)
Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance

References

  1. [1]
    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.CrossRefGoogle Scholar
  2. [2]
    Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108.CrossRefGoogle Scholar
  3. [3]
    Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angew. Chem., Int. Ed. 2015, 54, 2406–2409.CrossRefGoogle Scholar
  4. [4]
    Huang, J. H.; Ho, W.; Wang, X. C. Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem. Commun. 2014, 50, 4338–4340.CrossRefGoogle Scholar
  5. [5]
    Su, F. Z.; Mathew, S. C.; Lipner, G.; Fu, X. Z.; Antonietti, M.; Blechert, S.; Wang, X. C. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010, 132, 16299–16301.CrossRefGoogle Scholar
  6. [6]
    Xia, P. F.; Zhu, B. C.; Yu, J. G.; Cao, S. W.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230–3238.CrossRefGoogle Scholar
  7. [7]
    Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401.CrossRefGoogle Scholar
  8. [8]
    Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 2015, 25, 6885–6892.CrossRefGoogle Scholar
  9. [9]
    Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.Google Scholar
  10. [10]
    Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648.CrossRefGoogle Scholar
  11. [11]
    Wang, Y.; Li, H. R.; Yao, J.; Wang, X. C.; Antonietti, M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation. Chem. Sci. 2011, 2, 446–450.CrossRefGoogle Scholar
  12. [12]
    Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visiblelight photoreactivity. Chem. Commun. 2012, 48, 12017–12019.CrossRefGoogle Scholar
  13. [13]
    Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733.CrossRefGoogle Scholar
  14. [14]
    Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.CrossRefGoogle Scholar
  15. [15]
    Yao, L. H.; Wei, D.; Ni, Y. M.; Yan, D. P.; Hu, C. W. Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: Highly efficient visible light-induced H2-generation. Nano Energy 2016, 26, 248–256.CrossRefGoogle Scholar
  16. [16]
    Zhang, X. H.; Yu, L. J.; Zhuang, C. S.; Peng, T. Y.; Li, R. J.; Li, X. G. Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H2 production under near-infrared light. ACS Catal. 2014, 4, 162–170.CrossRefGoogle Scholar
  17. [17]
    Zhang, Y. H.; Pan, Q. W.; Chai, G. Q.; Liang, M. R.; Dong, G. P.; Zhang, Q. Y.; Qiu, J. R. Synthesis and luminescence mechanism of multicoloremitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013, 3, 1943.CrossRefGoogle Scholar
  18. [18]
    Bai, X. J.; Wang, L.; Zong, R. L.; Zhu, Y. F. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 2013, 117, 9952–9961.CrossRefGoogle Scholar
  19. [19]
    Guo, Q. X.; Xie, Y.; Wang, X. J.; Zhang, S. Y.; Hou. T.; Lv, S. C. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzenethermal process at low temperatures. Chem. Commun. 2004, 26–27.Google Scholar
  20. [20]
    Niu, P.; Zhang, L. L.; Liu, G.; Chen, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.CrossRefGoogle Scholar
  21. [21]
    Zhang, J. S.; Zhang, M. W.; Yang, C.; Wang, X. C. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 2014, 26, 4121–4126.CrossRefGoogle Scholar
  22. [22]
    Zeng, Z. X.; Li, K. X.; Yan, L. S.; Dai, Y. H.; Guo, H. Q.; Huo, M. X.; Guo, Y. H. Fabrication of carbon nitride nanotubes by a simple water-induced morphological transformation process and their efficient visible-light photocatalytic activity. RSC Adv. 2014, 4, 59513–59518.CrossRefGoogle Scholar
  23. [23]
    Tong, Z. W.; Yang, D.; Sun, Y. Y.; Nan, Y. H.; Jiang, Z. Y. Tubular g-C3N4 isotype heterojunction: Enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 2016, 12, 4093–4101.CrossRefGoogle Scholar
  24. [24]
    Ran, J. R.; Ma, T. Y.; Gao, G. P.; Du, X. W.; Qiao, S. Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 2015, 8, 3708–3717.CrossRefGoogle Scholar
  25. [25]
    Han, Q.; Wang, B.; Gao, J.; Cheng, Z. H.; Zhao, Y.; Zhang, Z. P.; Qu, L. T. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016, 10, 2745–2751.CrossRefGoogle Scholar
  26. [26]
    Wang, S. P.; Li, C. J.; Wang, T.; Zhang, P.; Li, A.; Gong, J. L. Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J. Mater. Chem. A 2014, 2, 2885–2890.CrossRefGoogle Scholar
  27. [27]
    Gao, J.; Zhou, Y.; Li, Z. S.; Yan, S. C.; Wang, N. Y.; Zou, Z. G. High-yield synthesis of millimeter-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale 2012, 4, 3687–3692.CrossRefGoogle Scholar
  28. [28]
    Li, J.; Cao, C. B.; Zhu, H. S. Synthesis and characterization of graphitelike carbon nitride nanobelts and nanotubes. Nanotechnology 2007, 18, 115605.CrossRefGoogle Scholar
  29. [29]
    Zhou, C.; Shi, R.; Shang, L.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Res. 2018, 11, 3462–3468.CrossRefGoogle Scholar
  30. [30]
    Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121.CrossRefGoogle Scholar
  31. [31]
    Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634–4639.CrossRefGoogle Scholar
  32. [32]
    Zhao, Y.; Zhao, F.; Wang, X. P.; Xu, C. Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. Graphitic carbon nitride nanoribbons: Graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 13934–13939.CrossRefGoogle Scholar
  33. [33]
    Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2012, 135, 18–21.CrossRefGoogle Scholar
  34. [34]
    Hong, J. D.; Yin, S. M.; Pan, Y. X.; Han, J. Y.; Zhou, T. H.; Xu, R. Porous carbon nitride nanosheets for enhanced photocatalytic activities. Nanoscale 2014, 6, 14984–14990.CrossRefGoogle Scholar
  35. [35]
    Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.CrossRefGoogle Scholar
  36. [36]
    Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 2003, 125, 10288–10300.CrossRefGoogle Scholar
  37. [37]
    Liu, J. H.; Zhang, T. K.; Wang, Z. C.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398–14401.CrossRefGoogle Scholar
  38. [38]
    Ma, W. G.; Han, D. X.; Zhou, M.; Sun, H.; Wang, L. N.; Dong, X. D.; Niu, L. Ultrathin g-C3N4/TiO2 composites as photoelectrochemical elements for the real-time evaluation of global antioxidant capacity. Chem. Sci. 2014, 5, 3946–3951.CrossRefGoogle Scholar
  39. [39]
    Mo, Z.; Xu, H.; Chen, Z. G.; She, X. J.; Song, Y. H.; Wu, J. J.; Yan, P. C.; Xu, L.; Lei, Y. C.; Yuan, S. Q. et al. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl. Catal. B Environ. 2018, 225, 154–161.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoshuai Wang
    • 1
    • 3
  • Chao Zhou
    • 1
  • Run Shi
    • 1
  • Qinqin Liu
    • 3
  • Geoffrey I. N. Waterhouse
    • 4
  • Lizhu Wu
    • 1
  • Chen-Ho Tung
    • 1
  • Tierui Zhang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.School of Materials Science and EngineeringJiangsu UniversityZhenjiangChina
  4. 4.School of Chemical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations